簡易檢索 / 詳目顯示

研究生: 曾志荏
Tseng, Chih-ren
論文名稱: 利用氧化鋅奈米線為基材製備奈米異質接面結構及其光電特性之研究
Study on the optoelectronic characteristics of ZnO nanowires-based nanoheterojunction
指導教授: 王水進
Wang, Shui-jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 69
中文關鍵詞: 異質接面奈米線太陽電池光檢測器氧化鋅
外文關鍵詞: ZnO, nanowires, heterojunction, photo detector, solar cell
相關次數: 點閱:91下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用水熱法成長一維氧化鋅奈米線,以氧化鋅奈米線為基材搭配其它P型半導體材料,以形成奈米異質接面結構,藉由奈米線異質接面一維結構之量子侷限效應,提升元件之光電響應能力。本研究方法具有低溫低壓製程、製程時間短和元件製作成本低廉,可以免除傳統半導體製程所需之設備費用高昂,製程技術複雜耗時,致使元件成本偏高。
    本實驗製備出n-ZnO nanowires/p-NiO與n-ZnO nanowires/p-GaN之奈米異質異質接面結構,將此兩種結構應用於紫外光感測器和太陽電池元件上。n-ZnO nanowires/p-NiO之奈米異質接面結構其主要特徵在於先行於ITO玻璃基板上,利用HTG成長氧化鋅奈米線(ZnO-NWs),再將氧化鎳(NiO)沉積於ZnO-NWs 表層上,則可得奈米線異質接面結構。此元件特性當電壓在順向電壓為5 V時之電流(Iforward)和逆向電壓為-5 V時之電流(Ireverse)下,具有很好的整流比(Iforward/Ireverse=89)。在紫外光照射下當NiO厚度為100 nm時,在-5 V時具有最佳之光電流特性,光電流約為6 A/cm2,所增加之電流約為暗電流之8倍。此元件更具有很快速的光響應時間,其上升時間(rise time)和下降時間(fall time)約為4秒和13秒。
    於n-ZnO nanowires/p-GaN之異質結構太陽電池方面,藉由其奈米線之異質接面一維結構之量子侷限效應,以提升光電轉換效率,另一方面由於奈米線有效提升表面之粗糙度,可大量降低光線的反射,增加電子、電洞的產生。由實驗中可得知當水熱法成長氧化鋅奈米線的成長時間為1 hr時,可以得較佳之光電轉換效率(2.28%)。此異質接面結構不僅可應用在太陽電池上面,當照射紫外光時,此元件亦會產生光電流特性,所以也可將此元件應用在紫外光感測器上。相信只要適度的調變其成長參數,預期n-ZnO nanowires/p-GaN之奈米異質接面結構應用於太陽電池、光感測器等光電元件上將會有極大的發展潛力。

    In this thesis, the growth and optoelectronic properties of ZnO nanowires-based nanoheterojunction structures are studied. A novel technology using hydrothermal growth (HTG) associated with deposition techniques for the fabrication of nano hetero structure based on ZnO nanowires (ZnO-NWs) is reported in this study. In addition, this study also proposes the use of ZnO-NWs-based nanoheterojunction structures for potential in applications of nano electronic and optoelectronic devices.
    First, nanoheterojnuction structures were formed via e-beam deposition of p-type nickel oxide (NiO) onto the vertical-aligned ZnO-NWs grown by HTG method. The dark J-V curve shows that the prepared NiO/ZnO-NWs nanoheterojunction structure with 100 nm-thick NiO film has a diode-like behavior with a forward threshold voltage (Vth) of 5.9 V, a leakage current (Jr at -5V) of 0.64 A/cm2, and a good rectification ratio (Iforward/Ireverse at 5 V) of 89, respectively. The experimental optoelectronic characteristics reveals that the one-dimension NiO/ ZnO-NWs nanoheterojunction structures have fairly good sensitivities and fast responses (the rise time and fall time is about 4 and 13 sec, respectively) to UV light with an increase in the photocurrent of about 8.
    Furthermore, in order to improve the optoelectronic properties of the nanoheterojunction structures, the growth of ZnO-NWs with controllable diameter/length/density and fabrication of ZnO-NWs-based nanoheterojunction structures on p-type gallium nitride (p-GaN) are presented. The optoelectronic properties of the ZnO-nanowires/p-GaN nanoheterojunction structures with good UV sensitivities and superior PV performances under an UV light and a simulated AM1.5G solar illumination are reported. Under AM 1.5G solar light illumination, the prepared ZnO-NWs/p-GaN nanoheterojunction structures show superior photovoltaic performances. The short-circuit current, open-circuit voltage, fill factor and power conversion efficiency of the ZnO-nanowires/p-GaN nanoheterojunction structures with 1.2-m-long and 100-nm-diameter ZnO-nanowires are 3.43 mA/cm2, 1.7 V, 39.13%, and 2.28%, respectively. It is expected that the functional ZnO-NWs-based nanoheterojunction structures would offer a simple and low-cost building block for high-performance optoelectronics in the future.

    中文摘要 I 英文摘要 III 誌 謝 V 表 目 錄 IX 圖 目 錄 X 第一章 緒論 1 1-1簡介 1 1-2實驗動機 4 第二章 文獻回顧 6 2-1氧化鋅奈米線成長機制 6 2-1-1 汽-液-固機制 6 2-1-2 溶液-液相-汽相機制 8 2-1-3 汽-固機制 9 2-2氧化鋅奈米線製程方法 9 2-3水熱法成長氧化鋅奈米線之演進與製程方法 14 第三章 實驗流程、設備及分析方法 19 3-1前言 19 3-2 實驗材料及設備 20 3-2-1 化學藥品 20 3-2-2 實驗設備 20 3-3 實驗流程與步驟 21 3-3-1 n-ZnO-NWs/p-GaN之奈米異質接面結構 21 3-3-2 n-ZnO-NWs/p-NiO之奈米異質接面結構 22 3-4 實驗參數對ZnO-NWs影響 22 3-5 實驗儀器設備 25 3-5-1 射頻磁控濺鍍機 25 3-5-2 電子束蒸鍍機 27 3-5-3 掃描式電子顯微鏡 28 3-5-4 高解析場發射掃描穿透式電子顯微鏡 30 3-5-5 太陽光模擬器 31 3-5-6 光激發螢光光譜儀 32 第四章 n-ZnO nanowires/p-NiO 之奈米異質接面結構 34 4-1 元件結構之設計與製程步驟 35 4-2 n-ZnO nanowires/p-NiO之奈米異質接面材料分析 37 4-3 n-ZnO nanowires/p-NiO之奈米異質接面結構之電性分析 43 4-4 實驗結果與探討 45 第五章 n-ZnO nanowires/p-GaN 之奈米異質接面結構之研製 47 5-1 元件結構之設計與製程步驟 47 5-2 氧化鋅奈米線的成長及材料分析 50 5-3 利用SiO2增加氧化鋅奈米線應力之成長 53 5-4 光電壓特性及光電流特性之量測 55 5-5 實驗結果與探討 61 第六章 結論及未來工作 62 6-1 結論 62 6-2 未來工作 63 參考文獻 65

    [1] Z. L. Wang, “Splendid One-Dimensional Nanostructues of Zinc Oxide: A New Nanomaterial Family for Nanotechnology,” ACS NANO, Vol. 2, no.10, pp. 1987-1992, 2008
    [2] Peardon’s Handbook of Crystallographic Data, 4795
    [3] N. K. Reddy, Q. Ahsanulhaq, J. H. Kim, Y. B. Hahn, “Behavior of n-ZnO nanowires/p-Si heterojunction devices at higher temperatures,” Appl. Phys. Lett., Vol. 92, p. 043127, 2008
    [4] L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials, Vol 13, pp. 233-235, 2001
    [5] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter, Vol. 16, pp. R829-R858, 2004
    [6] H. K. Yadav, K. Sreenivas, V. Gupta, “Enhanced response from metal/ZnO bilayer ultraviolet photodetector,” Appl. Phys. Lett., Vol. 90, p. 172113, 2007
    [7] M. H. Huang, Samuel Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, Vol. 292, p. 1897, 2001
    [8] Q. Ahsanulhaq, J. H. Kim, Y. B. Hahn, “Controlled selective growth of ZnO nanorod arrays and their field emission properties,” Nanotechnology, Vol. 18, p.485307, 2007
    [9] C. Y. Jiang, X. W. Sun, G. Q. Lo, and D. L. Kwong, “Improved dye-sensitized solar cell with a ZnO-nanoflower photoanode,” Appl. Phys. Lett., Vol. 90, p. 263501, 2007
    [10] K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse bsed on ZnO thin film,” Solid-State Electronics, Vol. 51, pp. 757-761, 2007
    [11] L. Luo, Y Zhang, S. S. Mao,and L. Lin, “Fabrication and characterization of ZnO nanowire based UV detectors,” Sensors and Actuators A, Vol. 127, pp. 201-206, 2006
    [12] C. Y. Chang, F. C. Tsao, C. J. Pan, and G. C. Chi, “Electroluminescence from ZnO nanowire/polymer composite p-n junction,” Appl. Phys. Lett., Vol. 88, p. 173503, 2006
    [13] N. K. Reddy, Q. Ahsanulhaq, and Y. B. Hahn, “Fabrication of zinc oxide nanorods based heterojunction device using simple and economic chemical solution method,” Appl. Phys. Lett., Vol. 93, p. 083124, 2008
    [14] M. C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee, J. M. Myoung, “ZnO-Nanowire-Inserted GaN/ZnO Heterojunction Light-emitting Diodes,” small, Vol. 3, no. 4, pp. 568-572, 2007
    [15] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, pp. 89-90, 1964
    [16] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, pp. 3165-3166, 2001
    [17] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, 5243, pp. 1791-1794,1995
    [18] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis ,Characterization, and Applications,” ADV. MATER., Vol. no. 15, p. 353, 2003
    [19] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, p. 1971, 1997
    [20] Y. Li, G. W. Meng, L. D. Zhang, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phsy. Lett., Vol. 76, pp. 2011-2013, 2000
    [21] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., Vol. 80, p. 4232, 2002
    [22] 中央研究院2006年年輕學者研究著作獎研究成果簡介, pp.14-19
    [23] W. I. Park, D. H. Kim, S. W. Jung, G. C. Y. , “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phsy. Lett., Vol. 80, pp. 4232-4234, 2002
    [24] L. Vayssieres, “growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Adv. Mater., Vol. 15, no. 5, pp.464-466, 2003
    [25] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., Vol. 92, p. 113505, 2008
    [26] M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics technology Letters, Vol. 20, no. 15, pp. 1293-1295, 2008
    [27] K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide,” J. Non-Cryst. Solid, Vol. 210, no. 48, pp. 48-54, 1997
    [28] S. C. Lyu, Y. Zhang, H. Ruh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires,” Chem. Phys. Lett., Vol. 363, no. 134, pp. 134-138, 2002
    [29] L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc., Vol. 113(8), pp. 2826-2833, 1991
    [30] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., Vol. 105(17), pp. 3350-3352, 2001
    [31] L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials., Vol. 13, no. 2, pp. 233-235, 2001
    [32] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., Vol. 124(44), pp. 12954-12955, 2002
    [33] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem., Vol. 115, pp. 3139-3142, 2003
    [34] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., Vol. 17, pp. 1001-1006, 2005
    [35] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., Vol. 14, pp. 2575-2591, 2004
    [36] H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Honoso, “Fabrication and photoresponse of pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO,” Appl. Phys. Lett., Vol. 83, p. 5, 2003
    [37] J. M. Choi, S. Im, “Ultraviolet enhanced Si-photodetector using p-NiO film,” Applied Surface Science, Vol. 244, pp. 435-438, 2005
    [38] X. D. Lou, W. F. Chu, J. Han, X. H. Zhao, N. An, G. X. Xi, “Preparation of NiO nanosheets by hydrothermal method and its photocatalytic activity,” Technology of Water Treatmen, Vol. 33, no. 11, pp. 24-27. Nov. 2007
    [39] D. B. Kuang, B. X. Lei, Y. P. Pan, X. Y. Yu, C. Y. Su, “Fabrication of novel hierarchical #-Ni(OH) and NiO Microspheres via an easy hydrothermal process,” J. Phys. Chem. C, Vol. 113(14), pp. 5508-5513, 2009
    [40] Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, H. Wan, “Influence some parameters on the synthesis of nanosized NiO material by modified sol-gel method,” Materials Letters, Vol. 61, pp. 3174-3178, 2007
    [41] J. H. Kim, E. M. Kim, D. Andeen, D. Thomson, S. P. DenBaars, F. F. Lang, “Growth of heteroepitaxial ZnO thin films on GaN-bufferd Al2O3(0001) substrates by low temperature hydrothermal synthesis at 90oC,” Adv. Funct. Mater., Vol. 17, pp. 463-471, 2007
    [42] D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung, M. Razeghi, “Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al2O3 heterojunction light emitting diode,” Appl. Phys. Lett., Vol. 88, p. 141918, 2006
    [43] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. Mckenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cell,” Nano Lett., Vol. 8(5), pp. 1501-1505, 2008
    [44] Y. Sun, D. J. Riley, Michael N. R. Ashfold, “Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated on Si substrate,” J. Phys. Chem. B, Vol. 110, pp. 15186-15192, 2006
    [45] O. Jani, I. Ferguson, C. Honsberg, S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., Vol. 91, p. 132117, 2007
    [46] C. H. Ku, J. J. Wu, “Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells,” Nanotechnology, Vol. 18, p. 505706, 2007
    [47] Y. F. Hsu, Y. Y. Xi, C. T. Yip, A. B. Djurisic, W. K. Chan, “Dye-sensitized solar cells using ZnO tetrapods,” J. Appl. Phys., Vol. 103, p. 083114, 2008
    [48] K. Takanezawa, K. Tajima, K. Hashimoto, “Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer,” Appl. Phys. Lett., Vol. 93, p. 063308, 2008
    [49] Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S Ramakrisha, G. W. Ho, “Controlled synthesis and application of ZnO nanoparticals, nanorods and nanospheres in dye-sensitized solar cells,” Nanotechnology, Vol. 20, p. 045604, 2009
    [50] Y. Y. Lin, Y. Y. Lee, L. Chang, J. J. Wu, C. W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Appl. Phys. Lett., Vol. 94, p. 063308, 2009
    [51] F. Li, S. H. Cho, D. I. Son, T. W. Kim, S. K. Lee, Y. H. Cho, S. Jin, “UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures,” Appl. Phys. Lett., Vol. 94, p. 111906, 2009
    [52] J. Liu, S. Wang, Z. Bian, M. Shan, C. Huang, “Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires,” Appl. Phys. Lett., Vol. 94, p. 173107, 2009

    下載圖示 校內:2012-07-17公開
    校外:2012-07-17公開
    QR CODE