簡易檢索 / 詳目顯示

研究生: 鄭人豪
Cheng, Jen-Hao
論文名稱: 不同流速流向影響下對單樁式離岸結構局部沖刷試驗研究
Experimental Investigation on Local Scour around Offshore Monopile Structures with Varying Flow Velocities and Directions
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 77
中文關鍵詞: 離岸風電單樁基礎潮流往復流局部沖刷動態平衡
外文關鍵詞: local scour, monopile foundation, tidal current, reversing flow, physical model experiment
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對潮流往復流條件下單樁基礎周圍局部沖刷之發展行為進行水工模型試驗,模擬臺灣西部離岸風場常見之潮流環境,探討流速變化與流向交替對坑形演化、沖刷深度發展與床面穩定趨勢之影響。彰化沿海地區潮流流速約介於 0.5–1.5 m/s,具顯著往復流特性,對基礎周圍之沖刷與沉積行為具有重要影響;然而現有研究多以單向流條件為主,對潮流交替作用下之沖刷演化機制仍缺乏系統性實驗驗證。
    本研究採用幾何相似比 1/36 之水工模型試驗,以模型流速 0.125–0.250 m/s(對應原型流速 0.75–1.50 m/s)模擬潮流往復過程。試驗以 120 分鐘為一完整潮流循環,包含正向與逆向共八階段流速配置,並延伸進行 240、360、480 與 600 分鐘之長時程觀測,以分析沖刷坑形與最大沖刷深度隨時間之演變特性。
    試驗結果顯示,潮流往復條件下之沖刷發展呈現「沖刷—回填—再沖刷」之週期性行為特徵。於初期階段,迎流側坑深隨流速增強而快速增加;當流向反轉時,原迎流區域因流場重新分布而出現局部回填,使沖刷深度增長趨緩。隨潮流循環次數增加,床面形態變化幅度逐漸降低,迎流坡與背流坡之坡度差異隨之減小,坑形逐步趨於相對對稱之配置,顯示系統進入動態平衡狀態,但尚未達最終平衡。
    與文獻中單向流條件下之試驗結果(Chen et al., 2019)相比,潮流往復條件下之最大沖刷深度相對較小,顯示流向反轉所引致之回填作用與能量分散機制能有效抑制局部侵蝕之累積。即使於高流速條件(V=0.250 m/s)下,沖刷影響範圍擴大,整體床面仍呈現趨於穩定之演化趨勢。
    本研究成果顯示,若僅依單向流經驗公式評估潮流主導環境下之沖刷行為,可能導致沖刷深度之保守高估。研究結果可作為離岸風場單樁基礎設計與長期維運評估之參考基礎,並可進一步發展適用於潮流條件下之沖刷修正模型,以提升離岸結構物設計之安全性與合理性。

    With the rapid development of offshore wind power, the stability of monopile foundations under tidal current environments has become an important engineering concern. Local scour induced by tidal currents can significantly affect the structural stability of offshore monopile foundations. This study aims to investigate the evolution characteristics of local scour around monopile foundations subjected to reversing tidal currents with different flow velocities and directions through large-scale physical model experiments.
    The experiments were conducted at the Tainan Hydraulics Laboratory, National Cheng Kung University, using a large flume measuring 60 m × 7 m × 1.2 m. A Froude similarity scale of 1/36 was adopted, corresponding to a prototype monopile diameter of 6 m. The model monopile, with a diameter of 0.167 m, was vertically installed in uniform sand with a median grain size (d₅₀) of 0.15 mm. Four flow velocities (0.125 m/s, 0.167 m/s, 0.208 m/s, and 0.250 m/s) were tested, representing prototype tidal current velocities ranging from 0.75 m/s to 1.5 m/s. Each experiment was carried out for a total duration of 600 minutes, including alternating forward and reverse flow conditions to simulate reversing tidal currents.
    The results show that local scour develops rapidly during the initial stage of the forward flow and gradually approaches a stable development trend over time. After flow reversal, partial backfilling occurs within the existing scour hole, while new scour develops on the opposite side of the monopile, resulting in asymmetric scour morphology. Increasing flow velocity leads to deeper maximum scour depths and faster scour development. The experimental results provide useful reference data for understanding local scour behavior under reversing tidal currents and for the design and safety assessment of offshore monopile foundations in tidal environments.

    摘要 I 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1研究背景 1 1-2研究目的 2 1-3章節架構 2 第二章 文獻回顧 5 2-1離岸風電基礎型式與局部沖刷現象概述 5 2-2單向流條件下之局部沖刷研究 6 2-3潮流(往復流)條件下之沖刷特性 8 2-4影響潮流與波流條件下沖刷深度之主要因子 10 2-5文獻回顧總結與研究定位 12 第三章 實驗方法與試驗設計 13 3-1潮流往復流條件下單樁沖刷試驗設計 13 3-1.1 模型縮尺與相似律 14 3-1.2 往復流條件與控制參數 16 3-1.3 試驗設備與量測配置 17 3-1.4 資料處理與分析 21 3-2試驗流程與操作步驟 23 3-3床面量測與資料處理 23 3-3.1 座標系統與等高線分析 24 3-3.2 床面量測與資料處理 24 3-3.3 無因次化與時間序列分析 24 第四章 分析與討論 26 4-1潮流往復條件下單樁沖刷之發展歷程 26 4-1.1 流速上升階段之沖刷行為(0–45 min) 26 4-1.2 流向反轉與回填階段(60–120 min) 31 4-1.3 多循環演化與平衡化過程(240–600 min) 40 4-2潮流速度變化與反轉頻率之影響 45 4-2.1 潮流速度歷程與床形反應關係 46 4-2.2 不同階段之坑形演化與深度變化 46 4-2.3 反轉頻率對能量傳遞與回填速率之影響 47 4-3潮流與單向流下沖刷形態比較 47 4-3.1 剖面形態差異分析 47 4-3.2 時間發展與平衡過程比較 48 4-3.3 平衡階段沖刷形態與深度比較 49 4-3.4 不同階段潮流與單向流床形演化之系統性比較 50 4-4潮流沖刷機制與工程意涵分析 58 4-4.1 沖刷—回填—再沖刷循環行為 58 4-4.2 渦流結構轉換與能量分散效應 58 4-4.3 平衡階段坑形特徵與穩定化過程 58 4-4.4 工程意涵與設計建議 58 第五章 結論與建議 60 5-1結論 60 5-1研究建議 60 參考文獻 62

    [1]Amini, A., Melville, B. W. and Ali, T. M., Clear-water Local Scour around Pile Groups in Steady Current, Journal of Hydraulic Engineering, 138(2), 177–185, 2012.
    [2]Breusers, H. N. C. and Raudkivi, A. J., Scouring, IAHR Hydraulic Structures Design Manual No. 2, Balkema, Rotterdam, 1991.
    [3]Breusers, H. N. C., Nicollet, G. and Shen, H. W., Local Scour around Cylindrical Bridge Piers, Journal of Hydraulic Research, 15(3), 211–252, 1977.
    [4]Bureau of Safety and Environmental Enforcement (BSEE), Offshore Wind Turbine Structures, U.S. Department of the Interior, 2020.
    [5]Bureau of Safety and Environmental Enforcement (BSEE), Offshore Wind Foundations Reference Guide, U.S. Department of the Interior, 2020.
    [6]Chen, H.-B., Cheng, C.-T. and Chiew, Y.-M., Local Scour around a Vertical Pile in Steady Currents and Waves, Journal of Marine Science and Technology, 27(2), 91–100, 2019.
    [7]Chiew, Y.-M., Local Scour at Bridge Piers, Proceedings of the 19th Coastal Engineering Conference, ASCE, 1989–2003, 1984.
    [8]Chiew, Y.-M., Local Scour at Bridge Piers, Journal of Hydraulic Engineering, 117(3), 362–376, 1991.
    [9]Chiew, Y. M., Local Scour at Bridge Piers, Ph.D. Thesis, University of Auckland, 1984.
    [10]De Vos, L., De Rouck, J., Troch, P. and Frigaard, P., Empirical Design of Scour Protections around Monopile Foundations, Coastal Engineering, 60, 286–298, 2012.
    [11]Dey, S., Fluvial Hydrodynamics: Hydraulic Structure Design and Sediment Transport, Springer-Verlag, Berlin, 2014.
    [12]Dey, S. and Raikar, R. V., Characteristics of Horseshoe Vortex in Developing Scour Holes at a Cylindrical Pier, Journal of Hydraulic Engineering, 133(4), 399–413, 2007.
    [13]Dey, S., Sumer, B. M. and Fredsøe, J., Control of Scour at Vertical Circular Piles under Waves and Current, Journal of Hydraulic Engineering, 132(3), 270–279, 2006.
    [14]DNVGL-RP-C205, Environmental Conditions and Environmental Loads, DNV GL, 2017.
    [15]Hao, Z., Zhang, L. and Yang, R.-Y., Flume Test on Mechanical Responses of Wind–Wave Cyclic Loaded Offshore Wind Turbine Supported by Jacket Foundation Considering Time-Varied Local Scour Effects, Applied Ocean Research, 143, 103–116, 2025.
    [16]Hjorth, P., Boundary Shear Stresses around Cylindrical Piers, Journal of Hydraulic Research, 13(3), 259–273, 1975.
    [17]Hong, J.-H. and Chiew, Y.-M., Local Scour and Flow Field around a Vertical Pile under Reversing Tidal Currents, Coastal Engineering, 100, 78–90, 2015.
    [18]IEC 61400-3-1, Design Requirements for Fixed Offshore Wind Turbines, International Electrotechnical Commission, 2019.
    [19]Kazeminezhad, M. H. and Kermani, R., Experimental Study of Local Scour under Tidal Reversing Flow, Ocean Engineering, 110, 158–168, 2015.
    [20]Kirkil, G., Constantinescu, G. and Musta, J., Investigation of Horseshoe Vortex System and Near-Wake Vortex Shedding around a Circular Cylinder, Journal of Hydraulic Research, 43(5), 522–531, 2005.
    [21]Melville, B. W., Pier and Abutment Scour: Integrated Approach, Journal of Hydraulic Engineering, 123(2), 125–136, 1997.
    [22]Melville, B. W. and Coleman, S. E., Bridge Scour, Water Resources Publications, Colorado, 2000.
    [23]Oumeraci, H., Scale Effects in Coastal Hydraulic Models, Symposium on Scale Effects in Modelling Hydraulic Structures, IAHR, 1984.
    [24]Roulund, A., Sumer, B. M., Fredsøe, J. and Michelsen, J., Numerical and Experimental Investigation of Flow and Scour around a Circular Pile, Journal of Fluid Mechanics, 534, 351–401, 2005.
    [25]Sadeque, M. A., Rajaratnam, N. and Loewen, M. R., Flow around Cylinders in Open Channels, Journal of Engineering Mechanics, 134(1), 60–71, 2008.
    [26]Sumer, B. M., Scour around Offshore Structures, Ocean Engineering, 30(8), 993–1018, 2003.
    [27]Sumer, B. M., Scour and Deposition in Coastal and Offshore Engineering, Coastal Engineering, 49(1–2), 3–35, 2003.
    [28]Sumer, B. M. and Fredsøe, J., Hydrodynamics around Cylindrical Structures, World Scientific, Singapore, 1997.
    [29]Sumer, B. M. and Fredsøe, J., Scour around Pile in Combined Waves and Current, Journal of Hydraulic Engineering, 127(5), 403–411, 2001.
    [30]Sumer, B. M. and Fredsøe, J., The Mechanics of Scour in the Marine Environment, World Scientific Publishing, 2002.
    [31]Sumer, B. M. and Fredsøe, J., Scour around Offshore Wind Turbine Foundations, Frontiers in Marine Science, 1, 1–13, 2014.
    [32]Sumer, B. M., Fredsøe, J., Christiansen, N. and Hansen, S. H., Time Scale of Scour around a Vertical Pile, Proceedings of the 23rd Coastal Engineering Conference (ICCE), ASCE, 1740–1753, 1992.
    [33]Sumer, B. M., Hatipoglu, F. and Fredsøe, J., Wave Scour around a Pile in Sand, Medium Dense and Dense Silt, Journal of Waterway, Port, Coastal and Ocean Engineering, 133(1), 14–27, 2007.
    [34]Tørum, A., Gudmestad, O. T. and Myrhaug, D., Scour and Deposition around Piles in Oscillatory Flow, Coastal Engineering Journal, 47(2–3), 173–196, 2005.
    [35]Wan, J.-S., Chen, S.-H. and Yang, R.-Y., Experimental Study on Scour Protection for Monopile and Jacket Foundations, Proceedings of the 41st Ocean Engineering Conference in Taiwan, Taipei, Taiwan, 2019.
    [36]Wang, C.-W., Yang, R.-Y. and Chen, S.-H., Experimental Study on Scour Protection for Offshore Structures under Wave–Current Interaction, Coastal Engineering Proceedings, 1(36), 74–82, 2021.
    [37]Wu, Y.-C., Yang, R.-Y. and Chen, S.-H., Study on Local Scour Mechanism around Offshore Monopile Foundation in Current and Wave, Journal of Marine Science and Technology, 27(3), 210–220, 2019.
    [38]Zanke, U. C. E., Theoretical Derivation of Bed-Load Formula of Meyer-Peter and Müller, Acta Mechanica, 27, 195–216, 1977.
    [39]Znidarcic, D. and Johnson, R. B., Sediment Transport Mechanisms in Oscillatory Flow, Coastal Engineering, 91, 12–25, 2014.
    [40]4C Offshore, Offshore Wind Farms Database, https://www.4coffshore.com, accessed 2024.

    QR CODE