| 研究生: |
吳景輝 Wu, Ching-hwang |
|---|---|
| 論文名稱: |
含銀AZO透明導電膜及AZO@Au奈米粉體之研究 Studies on Ag Nanoparticle-containing AZO Transparent Conducting Films and AZO@Au Nanopowders |
| 指導教授: |
陳東煌
Chen, Dong-hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 摻鋁氧化鋅 、殼核型奈米粒子 、透明導電膜 |
| 外文關鍵詞: | TCO, AZO, Core-shell |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關以溶凝膠法製備含銀之AZO薄膜與AZO@Au奈米粒子的研究。前者主要將摻鋁氧化鋅膠體溶液經旋轉塗佈及空氣與氫氣兩階段熱處理製得含銀之AZO透明導電薄膜,探討不同Al/Zn原子比對薄膜導電性及能隙的變化。後者先以迴流法製備AZO奈米粒子,再將金奈米粒子成長在AZO奈米粒子表面,探討所得AZO@Au奈米粒子之光學特性吸收,以評估其在薄膜上的應用性。
關於以溶凝膠法製備含銀之AZO薄膜的研究,改變含銀之AZO薄膜中的Al/Zn原子比(0.5~3.0),發現當Al/Zn原子比為1.5 at.%時,在空氣鍛燒後會最佳的導電值,但經過氫氣處理後,彼此間的差異卻不顯著,顯示氫氣熱處理對導電性的提升效果大於鋁的摻雜。在Al/Zn原子比為1.5 at.%及改善的氫氣熱處理程序下,可得到最低的電阻係數5.92×10-4 Ω-cm。
關於AZO@Au奈米粒子的製備,首先以迴流法製得分散性良好且二次聚集的AZO奈米粒子,平均粒徑約143 nm;其次,進一步製備AZO@Au奈米粒子。當以硼氫化鈉還原法直接在AZO表面被覆Au時,若先以檸檬酸鈉修飾AZO奈米粒子,可避免其被酸蝕;但當以無電鍍法在AZO表面被覆Au時,會衍生出來自敏化劑之錫的不純物,並造成嚴重水解。當利用AZO表面少量的金奈米粒子做為晶種,藉由甲醛還原法逐步地將金奈米粒子被覆其上,發現起初550 nm左右的吸收來自AZO表面上或外部自行成核的金粒子,當AZO核逐漸水解後,會使得這些金粒子聚集而產生600至900 nm的光學吸收。
This thesis concerns the preparation of Ag nanoparticle-containing Al-doped zinc oxide (AZO) thin films and AZO@Au nanoparticles. For the former, Ag nanoparticle-containing AZO thin films were prepared by the spin-coating of Ag nanoparticles-containing AZO sol and the followed air and hydrogen heat treatments. The effects of Al/Zn atomic ratio on the conductivity and band gap energy of thin films were investigated. For the latter, AZO nanoparticles were synthesized in 2-methoxyethanol with reflux first and then Au nanoparticles were deposited on the surface of AZO. The optical property of the resultant AZO@Au nanoparticles was investigated to evaluate their application in thin films.
For the study on the sol-gel synthesis of Ag nanoparticle-containing AZO thin films, from the effect of Al/Zn atomic ratio (0.5-3.0), it was found that the highest conductivity after calcination in air was obtained at Al/Zn=1.5 at.%. However, after hydrogen heat treatment, the effect of Al/Zn atomic ratio was not significant. This revealed that the conductivity enhancement by hydrogen heat treatment was more effective than by the doping of Al. When Al/Zn=1.5 at.% and the hydrogen heat treatment was improved, the lowest electric resistivity of 5.92×10-4 Ω-cm was obtained.
For the preparation of AZO@Au nanoparticles, at first, the well dispersed secondary particles of AZO nanoparticles were synthesized in 2-methoxyethanol with reflux. Their mean diameter was about 143 nm. Secondary, AZO@Au nanoparticles were prepared further. When Au nanoparticles were coated on the surface of AZO by sodium borohydride reduction, the modification of AZO with sodium citrate could avoid the hydrolysis of AZO. When the electroless plating technique was used for the coating of Au on the surface of AZO, the impurity derived from the Sn-based sensitizer was generated and serious hydrolysis was observed. Using few Au nanoparticles on the surface of AZO as the seeds to grow Au nanoparticles by formaldehyde reduction, it was found that the product exhibited an absorption peak around 550 nm, contributed from the Au nanoparticles deposited on the surface of AZO or the aggregates of Au nanoparticles formed in the bulk solution. After the gradual hydrolysis of AZO cores, the deposited Au nanoparticles were aggregated, yielding the absorption from 600-900 nm.
1. 馬振基,“奈米材料科技原理與應用”,全華科技圖書 (2003).
2. Geoffrey A. Ozin and AndrC. Arsenault, “Nonochemistry, A Chemical Approach to Nanomaterials”, RSC (2005).
3. Gűnter Schmid, “Nanoparticles”, WILEY-VCH (2004).
4. R. Darkow, T. Groth, W. Albrecht, K. Ltzow, and D. Paul, Biomaterials, 20, 1277 (1999).
5. D. Gan and L. A. Lyon, J. Am. Chem. Soc. 123, 7511 (2001).
6. Guido Kickelbick and Luis M. Liz-Marzn, Encyclo. Nanoscience Nanotechnol., 2, 199 (2004).
7. T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, Adv. Mater., 13, 1253 (2001).
8. T. Cassagneau and F. Caruso, Adv. Mater., 14, 732 (2002).
9. Y. Kobayashi, V. Salgueirio-Maceira, and L. M. Liz-Marzµn, Chem. Mater., 13, 1630 (2001).
10. G. Dong, Y. J. Wang, Y. Tang, N. Ren, W. L. Yang, and Z. Gao, Chem. Commun., 350 (2002).
11. J.-E. Jnsson, H. Hassander, and B. Trnell, Macromolecules, 27, 1932 (1994).
12. Frank Caruso, Marina Spasova, Vernica Salgueirio-Maceira, and Luis M. Liz-Marzµn, Adv. Mater., 13, 1090 (2001).
13. K-C Ho, P-J Tsai, Y-S Lin, and Y-C Chen, Anal.Chem., 76, 7162 (2004).
14. M. Han, X. Gao and J. Z. Su, S. Nie, Nat. Biotechnol., 19, 631 (2001).
15. X. Zhong, R. Xie, Y. Zhang, T. Basch, and W. Knoll, Chem. Mater., 17, 4038 (2005).
16. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc., 119, 7019 (1997).
17. R. H. Morriss and L. F. Collins, J. Chem. Phys., 41, 3357 (1964).
18. Li-Hsin Han1, Tingji Tang, and Shaochen Chen, Nanotechnology, 17, 4600 (2006).
19. Lee W.-r., Kim M. G., Choi, J.-r., Park J.-I., Ko S. J., Oh S. J.,and Cheon J. J. Am. Chem. Soc., 127, 16090 (2005).
20. J.-I. Park and J. Cheon, J. Am. Chem. Soc. 123, 5743 (2001).
21. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998).
22. G. O. Mallory and J. B. Hajdu, “Electroless Plating: Fundamentals and Applications”, American Electroplaters and Surface Finishers Society, Orlando, FL (1990).
23. J. B. Jackson and N. J. Halas, J. Phys. Chem. B, 105, 2743 (2001).
24. C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J.West, and R. Drezek, Tech. Cancer Res. Treat., 3, 33 (2004).
25. C. L. Kuo, T. J. Kuo, and M. H. Huang, J. Phys. Chem. B, 109, 20115 (2005).
26. Z. Yang, Q. H. Liu, and L. Yang, Mater. Res. Bull., 42, 221 (2007).
27. Y. Wang and J. Y. Lee, J. Nanopart. Res., 8, 1053 (2006).
28. 吳坤陽,“溶凝膠法製備含銀之AZO透明導電膜的研究”,國立成功大學化學工程所碩士論文 (2005).
29. K. L. Chopra, S. Magor, and D. K. Pandya, Thin Solid Films, 102, 1 (1983).
30. T. Minami, Semicond. Sci. Technol., 20, S35 (2005).
31. 楊明輝,透明導電膜,藝軒圖書出版社 (2006).
32. B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962).
33. 陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術,第80期, 11月 (1999).
34. 蔡裕榮,“以溶膠凝膠法製備透明導電氧化物薄膜的探討”,國立中正大學化學所碩士論文 (2001).
35. C. J. Brinker and G. W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”, Academic Press: San Diego, CA (1990).
36. D. E. Bornside, C. W. Macosko, and L. E. Scriven, J. Imaging Tech., 13, 122 (1987).
37. Masashi Ohyama, Hiromitsu Kozuka, and Toshinobu Yoko, Thin Solid Films, 306, 78 (1997).
38. Chris G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000).
39. P. Nunes, E. Fortunato, and R. Martins, Thin Solid Films, 383, 277 (2001).
40. P. Sagar, M. Kumar, and R. M. Mehra, Thin Solid Films, 489, 94 (2005).
41. R. Ghosh, G. K. Paul, and D. Basak, Mater. Res. Bull., 40, 1905 (2005).
42. J. R. Bellingham, W. A. Phillips, and C. J. Adkins, J. Mater. Sci. Lett., 11, 263 (1992).
43. I. Hamberg and C. G. Granqvist, J. Appl. Phys., 60, R123 (1986).
44. G. Gordillo and C. Caldern, Sol. Energy Mater. Sol. Cells, 69, 251 (2001).
45. T. J. Boyle, S. D. Bunge, N. L. Andrews, L. E. Matzen, K. Sieg, M. A. Rodriguez, and T. J. Headley, Chem. Mater., 16, 3279 (2004).
46. Kyeong Youl Jung, Yun Chan Kang, and Seung Bin Park, J. Mater. Sci. Lett., 16, 1848 (1997).
47. J. Muller and S. Weissenrieder, Fresenius J. Anal. Chem., 349, 380 (1994).
48. M. S. Ramanchalam, A. Rohatgi, W. B. Carter, J. P. Shaffer, and T.K. Gupta, J. Electron Mater., 24, 413 (1995).
49. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, and S. E. Lindquist, J. Phys. Chem. B, 101, 2598 (1997).
50. T. Makino, Y. Sagawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett., 78, 1237 (2001).
51. Y. S. Wang, P. John Thomas, and P. O’Brien, J. Phys. Chem. B, 110, 21412 (2006).
52. A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. V. Pashkova, S. J. Peartonb, K. Ip, R. M. Frazier, C. R. Abernathy, D. P. Nortonb, J. M. Zavadac, and R. G. Wilsond, Mater. Sci. Semicond. Process., 7, 77 (2004).
53. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett., 79, 988 (2001).
54. Baoquan Sun and Henning Sirringhaus, Nano Lett., 5, 2408 (2005).
55. E. Prodan, C. Radloff, N. J. Halas, and P. Norlander, Science, 302, 419 (2003).
56. Zhou, H. S., I. Honma, and H. Komiyama. Phys. Rev. B, 50, 12052 (1994).
57. W. Stber, A. Fink, and E. Bohn, J. Colloid Interf. Sci., 26, 62 (1968).
58. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, Ann. Biomed. Eng., 34, 15 (2006).
59. Marie-Christine Daniel and Didier Astruc, Chem. Rev., 104, 293 (2004).
60. Z. Ban, Y. A. Barnakov, F. Li, V. O. Golub, and C. J. O’Connor, J. Mater. Chem., 15, 4660 (2005).
61. R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett., 78, 4217 (1997).
62. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett., 6, 827 (2006).
63. C. Graf and A. van Blaaderen, Langmuir, 18, 524 (2000).
64. Y. T. Lim, O O. Park, and H. T. Jung, J. Colloid Interf. Sci., 263, 449 (2003).