簡易檢索 / 詳目顯示

研究生: 吳景輝
Wu, Ching-hwang
論文名稱: 含銀AZO透明導電膜及AZO@Au奈米粉體之研究
Studies on Ag Nanoparticle-containing AZO Transparent Conducting Films and AZO@Au Nanopowders
指導教授: 陳東煌
Chen, Dong-hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 摻鋁氧化鋅殼核型奈米粒子透明導電膜
外文關鍵詞: TCO, AZO, Core-shell
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文係有關以溶凝膠法製備含銀之AZO薄膜與AZO@Au奈米粒子的研究。前者主要將摻鋁氧化鋅膠體溶液經旋轉塗佈及空氣與氫氣兩階段熱處理製得含銀之AZO透明導電薄膜,探討不同Al/Zn原子比對薄膜導電性及能隙的變化。後者先以迴流法製備AZO奈米粒子,再將金奈米粒子成長在AZO奈米粒子表面,探討所得AZO@Au奈米粒子之光學特性吸收,以評估其在薄膜上的應用性。
      關於以溶凝膠法製備含銀之AZO薄膜的研究,改變含銀之AZO薄膜中的Al/Zn原子比(0.5~3.0),發現當Al/Zn原子比為1.5 at.%時,在空氣鍛燒後會最佳的導電值,但經過氫氣處理後,彼此間的差異卻不顯著,顯示氫氣熱處理對導電性的提升效果大於鋁的摻雜。在Al/Zn原子比為1.5 at.%及改善的氫氣熱處理程序下,可得到最低的電阻係數5.92×10-4 Ω-cm。
      關於AZO@Au奈米粒子的製備,首先以迴流法製得分散性良好且二次聚集的AZO奈米粒子,平均粒徑約143 nm;其次,進一步製備AZO@Au奈米粒子。當以硼氫化鈉還原法直接在AZO表面被覆Au時,若先以檸檬酸鈉修飾AZO奈米粒子,可避免其被酸蝕;但當以無電鍍法在AZO表面被覆Au時,會衍生出來自敏化劑之錫的不純物,並造成嚴重水解。當利用AZO表面少量的金奈米粒子做為晶種,藉由甲醛還原法逐步地將金奈米粒子被覆其上,發現起初550 nm左右的吸收來自AZO表面上或外部自行成核的金粒子,當AZO核逐漸水解後,會使得這些金粒子聚集而產生600至900 nm的光學吸收。

    This thesis concerns the preparation of Ag nanoparticle-containing Al-doped zinc oxide (AZO) thin films and AZO@Au nanoparticles. For the former, Ag nanoparticle-containing AZO thin films were prepared by the spin-coating of Ag nanoparticles-containing AZO sol and the followed air and hydrogen heat treatments. The effects of Al/Zn atomic ratio on the conductivity and band gap energy of thin films were investigated. For the latter, AZO nanoparticles were synthesized in 2-methoxyethanol with reflux first and then Au nanoparticles were deposited on the surface of AZO. The optical property of the resultant AZO@Au nanoparticles was investigated to evaluate their application in thin films.
    For the study on the sol-gel synthesis of Ag nanoparticle-containing AZO thin films, from the effect of Al/Zn atomic ratio (0.5-3.0), it was found that the highest conductivity after calcination in air was obtained at Al/Zn=1.5 at.%. However, after hydrogen heat treatment, the effect of Al/Zn atomic ratio was not significant. This revealed that the conductivity enhancement by hydrogen heat treatment was more effective than by the doping of Al. When Al/Zn=1.5 at.% and the hydrogen heat treatment was improved, the lowest electric resistivity of 5.92×10-4 Ω-cm was obtained.
    For the preparation of AZO@Au nanoparticles, at first, the well dispersed secondary particles of AZO nanoparticles were synthesized in 2-methoxyethanol with reflux. Their mean diameter was about 143 nm. Secondary, AZO@Au nanoparticles were prepared further. When Au nanoparticles were coated on the surface of AZO by sodium borohydride reduction, the modification of AZO with sodium citrate could avoid the hydrolysis of AZO. When the electroless plating technique was used for the coating of Au on the surface of AZO, the impurity derived from the Sn-based sensitizer was generated and serious hydrolysis was observed. Using few Au nanoparticles on the surface of AZO as the seeds to grow Au nanoparticles by formaldehyde reduction, it was found that the product exhibited an absorption peak around 550 nm, contributed from the Au nanoparticles deposited on the surface of AZO or the aggregates of Au nanoparticles formed in the bulk solution. After the gradual hydrolysis of AZO cores, the deposited Au nanoparticles were aggregated, yielding the absorption from 600-900 nm.

    總目錄 摘要...............................................I Abstract..........................................II 誌謝.............................................III 總目錄............................................IV 表目錄............................................VI 圖目錄...........................................VII 第一章 緒論........................................1 1.1 前言...........................................1 1.2 透明導電膜.....................................4 1.2.1 簡介.........................................4 1.2.2 透明導電膜的製備.............................5 1.2.3 AZO透明導電膜的發展與優勢....................6 1.3 殼核型奈米粒子的簡介...........................9 1.4 研究動機與目的................................18 第二章 理論基礎與文獻回顧.........................20 2.1 溶膠-凝膠法製備薄膜...........................20 2.1.1 簡介........................................20 2.1.2 旋轉塗佈的原理..............................23 2.1.3 退火處理....................................24 2.2 透明導電膜的原理..............................25 2.2.1 導電原理....................................25 2.2.2 光學原理....................................28 2.3 氧化鋅........................................32 2.3.1 簡介........................................32 2.3.2 氧化鋅粉體的文獻回顧........................34 2.4 金殼材料的特性................................36 2.5 重要儀器原理簡介..............................38 第三章 實驗部分...................................41 3.1 藥品與儀器....................................41 3.1.1 藥品........................................41 3.1.2 儀器........................................42 3.2 實驗流程圖....................................43 3.3 改變鋁含量於含銀之AZO透明導電膜的製備方法.....44 3.3.1 含銀之AZO溶凝膠的製備方法...................44 3.3.2 含銀之AZO透明導電膜的製作...................45 3.4 AZO奈米粒子之製備.............................47 3.5 AZO@Au奈米粒子之製備..........................49 3.5.1 滴定還原金粒子法............................49 3.5.2 無電鍍還原金粒子法..........................50 3.5.3 甲醛還原製備AZO@Au粒子......................51 3.6 特性分析......................................52 第四章 結果與討論.................................53 4.1 鋁含量對含銀之AZO透明導電膜的影響.............53 4.2 AZO奈米粒子的特性分析.........................60 4.3 滴定還原法製備AZO@Au奈米粒子的特性分析........64 4.3.1 未經修飾的AZO@Au奈米粒子....................64 4.3.2 經檸檬酸鈉修飾的AZO@Au奈米粒子..............68 4.4 無電鍍法製備AZO@Au奈米粒子的特性分析..........73 4.5 甲醛還原製備AZO@Au粒子的特性分析..............77 第五章 結論.......................................81 參考文獻...........................................82 表目錄 表1.1 奈米晶粒的表面原子數與表面能量估計..................2 表1.2 三大TCO材料的基本特性...............................7 表1.3 一些透明導電膜的使用範例............................8 表4.1 不同Al/Zn比之Ag-AZO薄膜在氫氣處理前後的電阻係數....55 表4.2 摻鋁前後與兩次熱處理間之電阻係數改變的冪次數.......55 表4.3 不同Al/Zn比之Ag-AZO薄膜在氫氣處理改善前後的電阻係數59 圖目錄 圖1.1 原子至塊材的能階示意圖..............................2 圖1.2 不同維度下的材料所對應的能階密度....................3 圖1.3 top-down與bottom-up法製備奈米材料的示意圖...........3 圖1.4 1972~2005年間,摻雜元素至ZnO、SnO2與In2O3三種TCO的電阻係數演進示意圖...........................................7 圖1.5 磁控濺鍍的示意圖....................................8 圖1.6 CdSe@CdS在不同殼層厚度下的發光效率.................10 圖1.7 不同粒徑的CdSe@ZnS量子點在紫外燈下的發光結果.......10 圖1.8 ZnSe與ZnSe@CdSe量子點的螢光光譜圖與UV-Vis吸收光譜圖11 圖1.9 以金屬置換反應法製備核殼奈米粒子之示意圖..........12 圖1.10 不同金屬被覆量下SiO2@Au奈米粒子之光譜圖...........12 圖1.11 不同官能化之硫醇取代奈米金表面硫醇分子之示意圖....13 圖1.12 硫醇化之CdS的薄膜自組裝示意圖.....................14 圖1.13 製備有機-有機核殼型奈米粒子之示意圖...............15 圖1.14 以PS為模板製備出Au/SiO2的中空球...................16 圖1.16 黃金葡萄球菌與(a)Au@IgG、(b)Au之生化標定應用......17 圖1.17 市售ITO與Ag-AZO之UV-VIS-NIR穿透與反射光譜.........19 圖2.1 溶膠至凝膠的變化示意圖............................22 圖2.2 旋轉塗佈示意圖....................................23 圖2.3 旋轉塗佈法製備薄膜過程中,退火熱處理的結晶成長示意24 圖2.4 電流I通過一段長度為L,截面積為A的材料.............25 圖2.5 只有摻雜物離子散射存在時,TCO電阻率與載子濃度的關係.......................................................27 圖2.6 ITO薄膜的穿透、反射與吸收光譜.....................31 圖2.7 Burstein-Moss效應的示意圖.........................31 圖2.8 直接型能隙與間接型能隙之電子能隙圖................33 圖2.9 氧化鋅晶體結構....................................33 圖2.10 改變Mg、Mn與Cd含量對ZnO能隙的影響.................35 圖2.11 一維氧化鋅的場效電晶體結構........................35 圖2.12 經Mie scattering理論計算出SiO2@Au的光學表現.......37 圖2.13 利用能階圖描述電漿混成............................37 圖2.14 四點式探針示意圖..................................40 圖3.1 氫氣熱處理的管型爐裝置圖..........................46 圖3.2 製備AZO奈米粉體的迴流裝置圖.......................48 圖3.3 AZO@Au之逐步被覆示意圖............................51 圖4.1 不同Al/Zn比之Ag-AZO薄膜在氫氣熱處理前後的電阻係數.55 圖4.2 Al/Zn=3.0 at.%之Ag-AZO薄膜橫截面的SEM圖...........56 圖4.3 不同鋁含量之Ag-AZO薄膜的穿透度....................56 圖4.4 不同鋁含量所對應的能隙變化圖......................57 圖4.5 不同鋁含量下的Ag-AZO薄膜其XRD光譜及經Scherrer equation與晶格理論分別計算出平均粒徑與c軸長度............57 圖4.6 Al/Zn=0.5 at.%之Ag-AZO薄膜的SEM圖.................58 圖4.7 Al/Zn=1.0 at.%之Ag-AZO薄膜的SEM圖.................58 圖4.8 Al/Zn=3.0 at.%之Ag-AZO薄膜的SEM圖.................59 圖4.9 不同Al/Zn比之Ag-AZO薄膜在氫氣熱處理改善前後的電阻係數.......................................................59 圖4.10 AZO奈米粉體之XRD光譜([Zn2+]=0.10 M, Al/Zn=1 at%)..61 圖4.11 迴流後之ZnO與AZO粒子的UV-Vis光譜..................61 圖4.12 迴流後之ZnO與AZO粒子的PL光譜......................62 圖4.13 迴流後之AZO粒子的TEM圖與粒徑分佈..................62 圖4.14 迴流後的AZO粒子之SEM圖(低倍率)..................63 圖4.15 迴流後的AZO粒子之SEM圖(高倍率)..................63 圖4.16 以硼氫化鈉還原後的AZO@Au之UV-Vis光譜..............65 圖4.17 以硼氫化鈉還原四氯金酸的空白實驗(a)一次加入,(b)控制加入.....................................................65 圖4.18 以硼氫化鈉還原所得AZO@Au粒子之TEM圖(反應完成後).66 圖4.19 以硼氫化鈉還原所得AZO@Au粒子之TEM圖(靜置七天後).66 圖4.20 以硼氫化鈉還原所得AZO@Au粒子之SEM圖(靜置十天後).67 圖4.21 AZO粒子旁的非結晶態物質之EDX圖譜..................67 圖4.22 AZO粒子與經檸檬酸鈉修飾後的AZO粒子之FTIR光譜......69 圖4.23 AZO粒子與經檸檬酸鈉修飾後的AZO粒子之界面電位......69 圖4.24 硼氫化鈉還原經檸檬酸鈉修飾後的AZO@Au粒子之UV-Vis光譜........................................................70 圖4.25 硼氫化鈉還原經檸檬酸鈉修飾後的AZO@Au粒子之TEM圖(靜置七天後)................................................70 圖4.26 AZO@Au粒子的EDX圖譜(聚焦於AZO@Au粒子上).........71 圖4.27 硼氫化鈉還原經檸檬酸鈉修飾後的AZO@Au粒子之SEM圖(靜置十天後,低倍率)........................................71 圖4.28 硼氫化鈉還原經檸檬酸鈉修飾後的AZO@Au粒子之TEM圖(靜置十天後,高倍率)..........................................72 圖4.29 AZO粒子經敏化及活化的示意圖.......................73 圖4.30 AZO粒子經過敏化後的TEM圖..........................74 圖4.31 AZO粒子經過活化後形成AZO@Au粒子之TEM圖(活化後20分鐘)......................................................74 圖4.32 無電鍍法所得AZO@Au粒子之UV-Vis光譜................75 圖4.33 粒子經過活化後形成AZO@Au粒子之TEM圖(活化後2天)..75 圖4.34 AZO@Au粒子的EDX圖譜(聚焦於方形粒子上)...........76 圖4.35 第一次至第五次逐步被覆得AZO@Au粒子的水溶液顏色....78 圖4.36 逐步被覆AZO@Au粒子之UV-Vis光譜....................78 圖4.37 第四次被覆AZO@Au粒子的TEM圖.......................79 圖4.38 第五次被覆AZO@Au粒子的TEM圖.......................79 圖4.39 (a)第一次被覆與(b)第五次被覆AZO@Au粒子的XRD光譜...80

    1. 馬振基,“奈米材料科技原理與應用”,全華科技圖書 (2003).
    2. Geoffrey A. Ozin and AndrC. Arsenault, “Nonochemistry, A Chemical Approach to Nanomaterials”, RSC (2005).
    3. Gűnter Schmid, “Nanoparticles”, WILEY-VCH (2004).
    4. R. Darkow, T. Groth, W. Albrecht, K. Ltzow, and D. Paul, Biomaterials, 20, 1277 (1999).
    5. D. Gan and L. A. Lyon, J. Am. Chem. Soc. 123, 7511 (2001).
    6. Guido Kickelbick and Luis M. Liz-Marzn, Encyclo. Nanoscience Nanotechnol., 2, 199 (2004).
    7. T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, Adv. Mater., 13, 1253 (2001).
    8. T. Cassagneau and F. Caruso, Adv. Mater., 14, 732 (2002).
    9. Y. Kobayashi, V. Salgueirio-Maceira, and L. M. Liz-Marzµn, Chem. Mater., 13, 1630 (2001).
    10. G. Dong, Y. J. Wang, Y. Tang, N. Ren, W. L. Yang, and Z. Gao, Chem. Commun., 350 (2002).
    11. J.-E. Jnsson, H. Hassander, and B. Trnell, Macromolecules, 27, 1932 (1994).
    12. Frank Caruso, Marina Spasova, Vernica Salgueirio-Maceira, and Luis M. Liz-Marzµn, Adv. Mater., 13, 1090 (2001).
    13. K-C Ho, P-J Tsai, Y-S Lin, and Y-C Chen, Anal.Chem., 76, 7162 (2004).
    14. M. Han, X. Gao and J. Z. Su, S. Nie, Nat. Biotechnol., 19, 631 (2001).
    15. X. Zhong, R. Xie, Y. Zhang, T. Basch, and W. Knoll, Chem. Mater., 17, 4038 (2005).
    16. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc., 119, 7019 (1997).
    17. R. H. Morriss and L. F. Collins, J. Chem. Phys., 41, 3357 (1964).
    18. Li-Hsin Han1, Tingji Tang, and Shaochen Chen, Nanotechnology, 17, 4600 (2006).
    19. Lee W.-r., Kim M. G., Choi, J.-r., Park J.-I., Ko S. J., Oh S. J.,and Cheon J. J. Am. Chem. Soc., 127, 16090 (2005).
    20. J.-I. Park and J. Cheon, J. Am. Chem. Soc. 123, 5743 (2001).
    21. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998).
    22. G. O. Mallory and J. B. Hajdu, “Electroless Plating: Fundamentals and Applications”, American Electroplaters and Surface Finishers Society, Orlando, FL (1990).
    23. J. B. Jackson and N. J. Halas, J. Phys. Chem. B, 105, 2743 (2001).
    24. C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J.West, and R. Drezek, Tech. Cancer Res. Treat., 3, 33 (2004).
    25. C. L. Kuo, T. J. Kuo, and M. H. Huang, J. Phys. Chem. B, 109, 20115 (2005).
    26. Z. Yang, Q. H. Liu, and L. Yang, Mater. Res. Bull., 42, 221 (2007).
    27. Y. Wang and J. Y. Lee, J. Nanopart. Res., 8, 1053 (2006).
    28. 吳坤陽,“溶凝膠法製備含銀之AZO透明導電膜的研究”,國立成功大學化學工程所碩士論文 (2005).
    29. K. L. Chopra, S. Magor, and D. K. Pandya, Thin Solid Films, 102, 1 (1983).
    30. T. Minami, Semicond. Sci. Technol., 20, S35 (2005).
    31. 楊明輝,透明導電膜,藝軒圖書出版社 (2006).
    32. B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962).
    33. 陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術,第80期, 11月 (1999).
    34. 蔡裕榮,“以溶膠凝膠法製備透明導電氧化物薄膜的探討”,國立中正大學化學所碩士論文 (2001).
    35. C. J. Brinker and G. W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”, Academic Press: San Diego, CA (1990).
    36. D. E. Bornside, C. W. Macosko, and L. E. Scriven, J. Imaging Tech., 13, 122 (1987).
    37. Masashi Ohyama, Hiromitsu Kozuka, and Toshinobu Yoko, Thin Solid Films, 306, 78 (1997).
    38. Chris G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000).
    39. P. Nunes, E. Fortunato, and R. Martins, Thin Solid Films, 383, 277 (2001).
    40. P. Sagar, M. Kumar, and R. M. Mehra, Thin Solid Films, 489, 94 (2005).
    41. R. Ghosh, G. K. Paul, and D. Basak, Mater. Res. Bull., 40, 1905 (2005).
    42. J. R. Bellingham, W. A. Phillips, and C. J. Adkins, J. Mater. Sci. Lett., 11, 263 (1992).
    43. I. Hamberg and C. G. Granqvist, J. Appl. Phys., 60, R123 (1986).
    44. G. Gordillo and C. Caldern, Sol. Energy Mater. Sol. Cells, 69, 251 (2001).
    45. T. J. Boyle, S. D. Bunge, N. L. Andrews, L. E. Matzen, K. Sieg, M. A. Rodriguez, and T. J. Headley, Chem. Mater., 16, 3279 (2004).
    46. Kyeong Youl Jung, Yun Chan Kang, and Seung Bin Park, J. Mater. Sci. Lett., 16, 1848 (1997).
    47. J. Muller and S. Weissenrieder, Fresenius J. Anal. Chem., 349, 380 (1994).
    48. M. S. Ramanchalam, A. Rohatgi, W. B. Carter, J. P. Shaffer, and T.K. Gupta, J. Electron Mater., 24, 413 (1995).
    49. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, and S. E. Lindquist, J. Phys. Chem. B, 101, 2598 (1997).
    50. T. Makino, Y. Sagawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett., 78, 1237 (2001).
    51. Y. S. Wang, P. John Thomas, and P. O’Brien, J. Phys. Chem. B, 110, 21412 (2006).
    52. A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. V. Pashkova, S. J. Peartonb, K. Ip, R. M. Frazier, C. R. Abernathy, D. P. Nortonb, J. M. Zavadac, and R. G. Wilsond, Mater. Sci. Semicond. Process., 7, 77 (2004).
    53. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett., 79, 988 (2001).
    54. Baoquan Sun and Henning Sirringhaus, Nano Lett., 5, 2408 (2005).
    55. E. Prodan, C. Radloff, N. J. Halas, and P. Norlander, Science, 302, 419 (2003).
    56. Zhou, H. S., I. Honma, and H. Komiyama. Phys. Rev. B, 50, 12052 (1994).
    57. W. Stber, A. Fink, and E. Bohn, J. Colloid Interf. Sci., 26, 62 (1968).
    58. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, Ann. Biomed. Eng., 34, 15 (2006).
    59. Marie-Christine Daniel and Didier Astruc, Chem. Rev., 104, 293 (2004).
    60. Z. Ban, Y. A. Barnakov, F. Li, V. O. Golub, and C. J. O’Connor, J. Mater. Chem., 15, 4660 (2005).
    61. R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett., 78, 4217 (1997).
    62. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett., 6, 827 (2006).
    63. C. Graf and A. van Blaaderen, Langmuir, 18, 524 (2000).
    64. Y. T. Lim, O O. Park, and H. T. Jung, J. Colloid Interf. Sci., 263, 449 (2003).

    下載圖示 校內:2008-06-30公開
    校外:2008-06-30公開
    QR CODE