簡易檢索 / 詳目顯示

研究生: 蘇子銘
Su, Zi-Ming
論文名稱: 有機鹵化物鈣鈦礦應用於憶阻器之研究
Studies of organic halide perovskite-based memristor
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: PEA2SnI4仿突觸憶阻器
外文關鍵詞: PEA2SnI4, artificial synaptic, memristor
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有機鹵化物鈣鈦礦做為憶阻器的主動層材料,探討其應用於仿神經突觸的電特性行為。利用溶液製程製作苯乙胺碘化鍚鈣鈦礦[phenylethylammonium tin halide perovskite, PEA2SnI4] 主動層薄膜,藉由改變前驅物溶液的溶質的莫爾體積濃度與phenethylammonium iodide (PEAI): tin(II) iodide (SnI2) 的混合比例,製作各種苯乙胺碘化鍚鈣鈦礦薄膜,探討製程條件對憶阻器元件電特性的影響。
    本研究利用原子力顯微鏡、吸收光譜儀、光致螢光光譜儀、X光繞射儀、和半導體參數分析儀來探討鈣鈦礦薄膜特性與憶阻器特性間的關係。材料分析結果指出先驅物溶液濃度愈高,製作的鈣鈦礦薄膜厚度愈厚,晶粒也愈大顆;若溶液中PEAI添加的比例愈高,鈣鈦礦薄膜會變得較薄也較平整。儘管製程條件不同,本研究製作之鈣鈦礦薄膜為主動層的二極體元件都可以具備憶阻器的特性,其中又以PEAI:SnI2比例為2.4:1所配製的0.2 M的先驅物溶液的條件下製備的鈣鈦礦憶阻器的電性表現最佳,不僅高/低電阻態的電流變化較明顯,且可以連續重複操作100次以上。
    最後,將製備的鈣鈦礦憶阻器應用在仿神經突觸,發現當元件在高電阻態時,可以表現出短期可塑性(short-term plasticity) 和長期增強作用(long-term potentiation);而在低電阻態時,則可表現出短期和長期抑制作用。本研究成功使用苯乙胺碘化鍚鈣鈦礦薄膜製作出憶阻器元件,且可具備仿神經突觸的特性。

    In this study, organic halide perovskites, namely phenylethylammonium tin halide perovskite (PEA2SnI4), were used as active layer materials of memristors to investigate their electrical behavior in mimicking neural synapses. Various PEA2SnI4 active layer films were fabricated via the solution process by changing the molar volume concentration of the precursor solution and the mixing ratio of PEAI:SnI2. In addition, the influence of process conditions of PEA2SnI4 films on the electrical properties of memristors was discussed in terms of atomic force microscopy, absorption spectrometer, photoluminescence spectrometer, X-ray diffractometer, and semiconductor parameter analyzer. The results show that the higher the concentration of the precursor solution, the thicker the perovskite film, and the larger the grain size. Moreover, the higher the proportion of PEAI in the solution, the thinner and smoother the PEA2SnI4 films were. Although the process conditions were different, the as-prepared PEA2SnI4-based diodes can exhibit memristor properties. Among them, the PEA2SnI4-based memristors prepared under the condition of 0.2 M precursor solution with PEAI:SnI2 ratio of 2.4:1 exhibited the best electrical performance, not only the best high/low resistance state resolution but can also repeat the operation more than 100 times continuously. Finally, the as-prepared memristors can exhibit short-term plasticity and long-term potentiation in the high-resistance state and short- and long-term inhibitions in the low-resistance state.

    中文摘要 I Extended Abstract III 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1 PEA2SnI4 簡介 1 1-2 憶阻器簡介 3 1-3 仿突觸元件介紹[24] 4 1-4 研究動機 5 第二章 憶阻器與神經突觸 11 2-1 憶阻器操作原理 11 2-1-1 記憶耐久力(Endurance) 11 2-1-2 記憶保持力(Retention) 12 2-1-3 電阻比(RHRS /RLRS Ratio) 12 2-1-4 傳導機制 12 2-2 神經突觸概論 13 2-2-1 人工突觸憶阻器的傳輸特性 13 2-2-2 突觸可塑性[31] 14 2-2-3 突觸後電流與訊號雜訊比[32] 14 2-2-4 雙脈衝促進與抑制[31] 15 第三章 研究方法與分析儀器 19 3-1 實驗材料 19 3-1-1 鈣鈦礦材料 19 3-1-2 有機修飾層材料 19 3-1-3 有機溶劑 19 3-2 鈣鈦礦憶阻器元件製程 20 3-2-1 鈣鈦礦溶液配置 20 3-2-2 清洗基板 21 3-2-3 蒸鍍底部電極 21 3-2-4 旋塗有機介電層材料 21 3-2-5 旋塗鈣鈦礦主動層 22 3-2-6 蒸鍍修飾層與頂部電極 22 3-2-7 使用PMMA與PS進行封裝 22 3-3 實驗分析與儀器介紹 22 3-3-1 半導體參數分析儀(Keithley 4200,4200) 22 3-3-2 原子力顯微鏡(Atomic Force Microscope , AFM) 23 3-3-3 光致螢光光譜儀(Photoluminescence, PL) 23 3-3-4 吸收光譜儀 23 3-3-5 X-ray繞射儀(X-ray diffraction analysis) 24 第四章 實驗結果與討論 28 4-1 前言 28 4-2 鈣鈦礦結晶特性分析 28 4-2-1 AFM分析 28 4-2-2 吸收光譜分析 30 4-2-3 PL分析 31 4-2-4 XRD分析 33 4-3 電性分析 33 4-3-1 憶阻器元件照光下電特性分析 34 4-3-2 改變限制電流對於憶阻器之影響 35 4-3-3 改變鈣鈦礦莫爾濃度對於憶阻器之影響 36 4-3-4 鈣鈦礦憶阻器傳導機制之分析 38 4-3-5 憶阻器之記憶保持力與記憶耐久力之分析 39 4-4 鈣鈦礦神經突觸分析 42 4-4-1 突觸後電流分析 43 4-4-2 雙脈衝刺激分析 45 4-4-3 突觸可塑性分析 48 第五章 總結 80 5-1 結論 80 5-2 未來展望 81 參考文獻 83

    1. M. I. H Ansari, A. Qurashi, M. K. Nazeeruddin, Frontiers, opportunities, and challenges in perovskite solar cells: A critical review, Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2018, 35, pp. 1-24.
    2. S. Liu, Y. Guan, Y. Sheng, Y. Hu , Y. Rong, A review on additives for halide perovskite solar cells, Advanced Energy Materials, 2020, 10, 1902492.
    3. A. Dubey, N. Adhikari, S. Mabrouk, F. Wu, K. Chen, S. Yang, Q. Qiao, A strategic review on processing routes towards highly efficient perovskite solar cells, Journal of Materials Chemistry A, 2018, 6, pp. 2406-2431.
    4. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 2009, 131, pp. 6050-6051.
    5. M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. Correa-Baena, W.Tress, A. Abate, A. Hagfeldt, M. GRÄTZEL , Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 2016, 354, pp. 206-209.
    6. N. Kim, Y. H. Min, S. Noh, E. Cho, G. Jeong, M. Joo, S. Ahn, J. S. Lee, S. Kim, K. Ihm, H. Ahn, Y. Kang, H. Lee, D. Kim, Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis, Scientific Reports, 2017, 7, 4645.
    7. J. You, Y. Yang, Z. Hong, T. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou,W. Chang, G. Li, Y. Yang, Moisture assisted perovskite film growth for high performance solar cells, Applied Physics Letters, 2014, 105, 183902.
    8. C. Liang, D. Zhao, Y. Li, X. Li, S. Peng, G. Shao, G. Xing, Ruddlesden-Popper perovskite for stable solar cells, Energy & Environmental Materials, 2018, 1, pp. 221-231.
    9. E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey, L. Dou, Two-dimensional halide perovskite nanomaterials and heterostructures, Chemical Society Reviews, 2018, 47, pp. 6046-6072.
    10. Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, W. Huang, Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application, Journal of Materials Chemistry A, 2019, 7, pp. 13860-13872.
    11. C. R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Science, 1999, 286, pp. 945-947.
    12. C. Chen, X. Zhang, G. Wu, H. Li, H. Chen, Visible-Light ultrasensitive solution-prepared layered organic-inorganic hybrid perovskite field-effect transistor, Advanced Optical Materials, 2017, 5, 1600539.
    13. L. Qian, Y. Sun, M. Wu, C. Li, D. Xie, L.Ding, G.Shi, A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device, Nanoscale, 2018, 10, pp. 6837-6843.
    14. L. O. Chua, Memristor - missing circuit element, IEEE Transactions on Circuit Theory, 1971, 18, pp. 507-519.
    15. R. S. Williams, How we found the missing memristor, IEEE Spectrum, 2008, 45, pp. 24-31.
    16. W. S. Choi, J. T. Jang, D. Kim, T. J. Yang, C. Kim, H. Kim, D. H. Kim, Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications, Chaos Solitons & Fractals, 2022, 156, 111813.
    17. M. Pereira, J. Deuermeier, R. Nogueira, P. A. Carvalho, R. Martins, E. Fortunato, A. Kiazadeh, Noble-metal-free memristive devices based on IGZO for Neuromorphic applications, Advanced Electronic Materials, 2020, 6, 2000242.
    18. Z. Shen, Y. Qi, I. Z. Mitrovic, Effect of annealing temperature for Ni/AlOx/Pt rram devices fabricated with solution-based dielectric, Micromachines, 2019, 10, 446.
    19. T. Tan, T. Du, A. Cao, Y. Sun, H. Zhang, G. Zha, Resistive switching of the HfOx/HfO2 bilayer heterostructure and its transmission characteristics as a synapse, RSC Advances, 2018, 8, pp. 41884-41891.
    20. M. Zaheer, Y. Cai, A. B. Waqas, S. F. Abbasi, G. Zhu, C. Cong, Z. J. Qiu, R. Liu, Y. Qin, L. Zheng, L. Hu, Liquid-metal-induced memristor behavior in polymer insulators, Physica Status Solidi-Rapid Research Letters, 2020, 14, 2000050.
    21. M. Zaheer, Y. Cai, A. B. Waqas, S. F. Abbasi, G. Zhu, C. Cong, Z. J. Qiu, R. Liu, Y. Qin, L.Zheng, L. Hu, Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for Neuromorphic computing, ACS Nano, 2017, 11, pp. 12247-12256.
    22. J. Choi, S. Park, J. Lee, K. Hong, D. H. Kim, C. W. Moon, G. D. Park, J. Suh, J. Hwang, S. Y. Kim, H. S. Jung, N. G. Park, S. Han, K. T. Nam, H. W. Jang, Organolead halide perovskites for low operating voltage multilevel resistive switching, Advanced Materials, 2016, 28, pp. 6562-6567.
    23. W. Zhang, B. Gao, J. Tang, X. Li, W. Wu, H. Qian, H. Wu, Analog-type resistive switching devices for neuromorphic computing, Physica Status Solidi-Rapid Research Letters, 2019, 13, 1900204.
    24. A. H. Bazzari, H. R. Parri, Neuromodulators and long-term synaptic plasticity in learning and memory: A steered-glutamatergic perspective, Brain Sciences, 2019, 9, 300.
    25. S. Dai, X. Wu, D. Liu, Y. Chu, K. Wang, B. Yang, J. Huang, Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors, ACS Applied Materials & Interfaces, 2018, 10, pp. 21472-21480.
    26. S. Kim, Y. Lee, M. H. Park, G. T. Go, Y. H. Kim, W. Xu, H. D. Lee, H. Kim, D. G. Seo, W. Lee, T. W. Lee, Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing, Advanced Electronic Materials, 2019, 5, 1900008.
    27. Y. Kim, A. Chortos, W. Xu, Y. Liu, J. Y. Oh, D. Son, J. Kang, A. Foudeh, C. Zhu, Y. J. Lee, S. Niu, J. Liu, R. Pfattner, Z. Bao, T. W. Lee, A bioinspired flexible organic artificial afferent nerve, Science, 2018, 360, pp. 998-1003.
    28. T. Dai, Q. Cao, L. Yang, M. H. Aldamasy, M. Li, Q. Liang, H. Lu, Y. Dong, Y. Yang, Strategies for high-performance large-area perovskite solar cells toward commercialization, Crystals, 2021, 11, 295.
    29. Y. Ju, X. G. Wu, G. Dai, T. Song, H. Zhong, The evolution of photoluminescence properties of PEA2SnI4 upon oxygen exposure: Insight into concentration effects, Advanced Functional Materials, 2022, 32, 2108296.
    30. N. Kumar, M. Patel, T. T. Nguyen, P. Bhatnager, J. Kim, All-oxide-based and metallic electrode-free artificial synapses for transparent neuromorphic computing, Materials Today Chemistry, 2022, 23, 100681.
    31. Y. He, Y. Yang, S. Nie, R. Liu, Q. Wan, Electric-double-layer transistors for synaptic devices and neuromorphic systems, Journal of Materials Chemistry C, 2018, 6, pp. 5336-5352.
    32. S. Seo, J. J. Lee, H. J. Lee, H. W. Lee, S. Oh, J. J. Lee, K. Heo, J. H. Park, Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing, ACS Applied Electronic Materials, 2020, 2, pp. 371-388.
    33. P. P. Atluri, W.G. Regehr, Determinants of the time course of facilitation at the granule cell to purkinje cell synapse, Journal of Neuroscience, 1996, 16, pp. 5661-5671.
    34. Y. Sun, N. Tai, C. Song, Z. Wang, J. Yin, F. Li, H. Wu, F. zeng, H. Lin, F. Pan, Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device, Journal of Physical Chemistry C, 2018, 122, pp. 6431-6436.
    35. Y. Ren, H. Ma, W. Wang, Z. Wang, H. Xu, X. Zhao, W. Liu, J. Ma, Y. Liu, Cycling-induced degradation of organic-inorganic perovskite-based resistive switching memory, Advanced Materials Technologies, 2019, 4, 1800238.
    36. H. Yao, F. Zhou, Z. Li, Z. Ci, L. Ding, Z. Jin, Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells, Advanced Science, 2020, 7, 1903540.

    QR CODE