| 研究生: |
沈育琪 Shen, Yu-Qi |
|---|---|
| 論文名稱: |
伏隔核核心對甲基安非他命相關記憶的消除和復發產生不同影響 The Differential Effects of the Nucleus Accumbens Core on the Extinction and Reinstatement of Methamphetamine-Related Memory |
| 指導教授: |
簡伯武
Gean, Po-Wu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 甲基安非他命 、成癮 、消除 、復發 、基底外側杏仁核 、前邊緣皮質 、伏隔核 |
| 外文關鍵詞: | Methamphetamine, Addiction, Extinction, Reinstatement, Basolateral amygdala, Prelimbic cortex, Nucleus accumbens core |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景
甲基安非他命是台灣最嚴重的毒品濫用之一。當物質使用障礙(又稱作毒癮)患者接觸到與藥物相關的環境時,容易導致他們再度吸毒。臨床心理學家使用線索暴露療法治療成癮,是基於一種稱作「消除」的理論,讓患者反覆接觸藥物相關環境而不給予藥物獎勵,逐漸削弱對藥物相關環境所引起的刺激反應。不幸的是,消除並不會完全抹除對毒品的記憶,尋求毒品的行為再次發生。故此,復發成為臨床上治療毒癮的最大挑戰。在獎勵的神經迴路中,伏隔核核心(NAc core)調節對甲基安非他命的渴望孵化,並促進尋求毒品。伏隔核核心接受來自基底外側杏仁核(BLA)和前邊緣皮質(PL)的興奮性投射;其中,基底外側杏仁核參與對獎勵或厭惡刺激做出的行為反應和形成相關記憶;前邊緣皮質則是負責認知過程、決策和目標導向行為。然而,目前仍然不清楚基底外側杏仁核到伏隔核核心的神經迴路、前邊緣皮質到伏隔核核心的神經迴路以及伏隔核核心本身是否參與甲基安非他命相關記憶的消除和復發。
研究目的
研究宗旨是釐清參與在甲基安非他命的記憶消除和復發過程的神經迴路,開發出一個能夠破壞甲基安非他命記憶並有效預防復發的治療策略。
研究方法
我們使用條件位置偏好(CPP)建立小鼠復發模型並用來探討甲基安非他命記憶的消除和復發。使用逆行回溯珠(retrobeads)標定細胞本體,以確定投射到伏隔核核心的神經迴路。最後,我們使用化學遺傳學(chemogenetic)技術去操弄神經迴路的活性。
研究結果
成癮的老鼠原本偏好待在甲基安非他命配對室,經過消除訓練後,變成待在非藥物配對室比較久,表示他們獲得消除記憶。之後注射低劑量甲基安非他命,經過消除的小鼠又再度回到甲基安非他命配對室比較久。這些結果表明消除不會刪除藥物記憶,且仍然導致復發。因此,我們轉導AAV-CaMKIIα-hM4D(Gi)-mCherry到基底外側杏仁核並傳至伏隔核核心並調查在記憶被提取後,抑制基底外側杏仁核興奮性投射到伏隔核核心是否能刪除其記憶。結果顯示抑制在伏隔核核心中的基底外側杏仁核的谷氨酸能神經元末梢產生類似消除的效果,並減弱復發。接著,我們轉導AAV(rg)-hSyn-hM3D(Gq)-mCherry到伏隔核核心,評估其神經元是否參與甲基安非他命的復發。結果顯示在消除訓練後,活化伏隔核核心神經元能夠恢復甲基安非他命的記憶。然而,刺激基底外側杏仁核到伏隔核核心則無法喚起藥物記憶。結果表明活化伏隔核核心,而非基底外側杏仁核到伏隔核核心,足以誘發恢復甲基安非他命記憶。根據以上實驗結果顯示在沒有消除的情況下,在記憶被提取後,抑制基底外側杏仁核到伏隔核核心可以破壞甲基安非他命記憶。相反地,在有消除的情形下活化這條神經迴路卻無法喚起原本的甲基安非他命記憶。我們提出一個假設,即消除記憶抑制了原始藥物記憶的表達。先前研究表明伏隔核參與消除記憶的作用,為此調查伏隔核核心是否調節消除記憶,消除測試後在伏隔核核心注入蛋白質合成抑制劑──茴香黴素(Ani),並在隔天進行重測。結果顯示茴香黴素組恢復了甲基安非他命的記憶,表明在消除記憶被提取後,注入茴香黴素到伏隔核核心破壞了甲基安非命的消除記憶。在相似的實驗中,我們在前邊緣皮質轉導AAV-CaMKIIα-hM4D(Gi)-mCherry到伏隔核核心,調查前邊緣皮質到伏隔核核心這條神經迴路是否產生一樣的結果。結果顯示抑制在伏隔核核心中的前邊緣皮質的谷氨酸能神經元末梢未能破壞消除記憶。這些發現表明伏隔核核心,而非前邊緣皮質谷氨酸能投射到伏隔核核心,對於甲基安非他命的消除記憶是必要的。
研究重要性
在消除後,活化伏隔核核心足以恢復甲基安非他命的記憶。重複抑制伏隔核核心中的基底外側杏仁核的谷氨酸能神經元末梢導致與消除類似的藥物記憶減少。在提取消除記憶後,抑制伏隔核核心的蛋白質合成破壞了甲基安非他命的消除記憶。總結,伏隔核核心參與了甲基安非他命的消除和復發記憶。這些研究揭示了消除甲基安非他命記憶的神經迴路,可能為戒除毒癮開闢了一個有其前景的治療策略。
Background
In Taiwan, one of the most serious abused substances is methamphetamine (MeAM). When individuals with substance use disorder (SUD), also known as addiction, are exposed to drug-related environments, they easily engage in drug abuse again. Clinical psychologists use cue exposure therapy (CET) for addiction treatment which is based on the “extinction” theory. Repeatedly exposing patients to drug-related environments without providing drug rewards will gradually weaken the conditioned response to drug-related cues. Unfortunately, extinction does not eliminate drug memory, leading to the reoccurrence of drug-seeking behavior. Therefore, relapse remains the primary challenge in the clinical treatment of addiction. In the reward circuitry, the nucleus accumbens core (NAc core) mediates incubation of MeAM craving and facilitates drug-seeking behavior. The NAc core receives excitatory projections from the basolateral amygdala (BLA) and the prelimbic cortex (PL). The BLA is involved in behavioral responses to rewarding or aversive stimuli and the formation of related memories, while the PL is responsible for cognitive processes, decision-making, and goal-directed behaviors. However, it remains unclear whether the BLA-NAc core circuit, PL-NAc core circuit, and the NAc core itself are implicated in the extinction and reinstatement of MeAM-related memory.
Purpose
The study aims to identify the neural circuitry involved in the processes of extinction and reinstatement of MeAM-related memory and develop a therapeutic strategy to disrupt MeAM-related memory and effectively prevent relapse.
Methods
We established a reinstatement mouse model using conditioned place preference (CPP) to investigate extinction and reinstatement of MeAM-related memory. Retrobeads were employed to label cell bodies to identify the neural circuits projecting to the NAc core. Finally, we utilized chemogenetic techniques to manipulate the activity of the neural circuits.
Results
The addicted mice initially exhibited a preference for staying in the MeAM-paired compartment. After extinction training, they spent more time in the non-drug paired compartment, suggesting they had acquired extinction memory. After injecting a low dose of MeAM, the extinction mice returned to spending more time in the MeAM-paired compartment. These results indicate that extinction does not erase drug memory and still leads to relapse. Thus, we transduced AAV-CaMKIIα-hM4D(Gi)-mCherry into the BLA which transported to the NAc core to examine whether silencing excitatory projection from BLA to NAc core following memory retrieval affected MeAM-related memory. These results showed that the silencing of glutamatergic nerve terminals in the BLA within the NAc core mimicked extinction and attenuated priming effect. Next, we evaluated the involvement of the NAc core neuron in the reinstatement of MeAM-related memory by transducing AAV(rg)-hSyn-hM3D(Gq)-mCherry into the NAc core. These results showed that activation of the NAc core neuron reinstated MeAM-related memory after extinction. However, stimulation of the BLA-NAc core circuit failed to recall drug memory. The results demonstrate that activation of the NAc core, but not the BLA innervating the NAc core, is sufficient to induce the reinstatement of MeAM-related memory. Based on the above experimental results, it suggests that inhibition of the projection from the BLA to NAc core after memory retrieval disrupts MeAM-related memory in the absence of extinction. Conversely, activation of this circuit after extinction does not result in the recall of the original MeAM-related memory. We hypothesize that extinction memory suppresses the expression of the original drug memory. Previous studies indicate that the NAc is involved in extinction memory. To investigate whether the NAc core mediated extinction memory, infusing anisomycin (Ani), a protein synthesis inhibitor, into the NAc core after extinction test, and the retest was conducted on the following day. These results showed that MeAM-related memory was reinstated in Ani-treated group, suggesting that the Ani infusion to NAc core after retrieval of extinction memory blocks MeAM-related extinction memory. In the similar experiments, we transduced AAV-CaMKIIα-hM4D(Gi)-mCherry into the PL which transported to the NAc core to investigate whether the PL-NAc core circuit exhibits identical outcomes. The results showed that inhibition of glutamatergic transmission from the PL to the NAc core failed to disrupt extinction memory. These findings indicate that the NAc core, rather than the excitatory projection from the PL to the NAc core, is necessary for the MeAM-related extinction memory.
Significance
Activation of the NAc core neuron was sufficient to reinstate MeAM-related memory after extinction. Repetitive inhibition of excitatory projection from BLA to NAc core resulted in extinction-like reduction of MeAM-related memory. Inhibiting protein synthesis of the NAc core after extinction memory retrieval blocked MeAM-related extinction memory. To sum up, the NAc core is implicated in extinction and reinstatement of the MeAM-related memory. The study provides insights into the circuitry responsible for extinction of MeAM-related memory which may open a promising therapeutic strategy for stopping drug addiction.
Aguilar, M. A., Rodriguez-Arias, M., & Minarro, J. (2009). Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev, 59(2), 253-277. https://doi.org/10.1016/j.brainresrev.2008.08.002
Alberini, C. M. (2011). The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front Behav Neurosci, 5, 12. https://doi.org/10.3389/fnbeh.2011.00012
Ambroggi, F., Ishikawa, A., Fields, H. L., & Nicola, S. M. (2008). Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron, 59(4), 648-661. https://doi.org/10.1016/j.neuron.2008.07.004
Antonelli, M., Fattore, L., Sestito, L., Di Giuda, D., Diana, M., & Addolorato, G. (2021). Transcranial Magnetic Stimulation: A review about its efficacy in the treatment of alcohol, tobacco and cocaine addiction. Addict Behav, 114, 106760. https://doi.org/10.1016/j.addbeh.2020.106760
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S., & Roth, B. L. (2007). Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A, 104(12), 5163-5168. https://doi.org/10.1073/pnas.0700293104
Aylward, R. L., & Totterdell, S. (1993). Neurons in the ventral subiculum, amygdala and entorhinal cortex which project to the nucleus accumbens: their input from somatostatin-immunoreactive boutons. J Chem Neuroanat, 6(1), 31-42. https://doi.org/10.1016/0891-0618(93)90005-o
Bardo, M. T., Horton, D. B., & Yates, J. R. (2015). Conditioned Place Preference as a Preclinical Model for Screening Pharmacotherapies for Drug Abuse. In Nonclinical Assessment of Abuse Potential for New Pharmaceuticals (pp. 151-196). https://doi.org/10.1016/b978-0-12-420172-9.00007-2
Berman, D. E., & Dudai, Y. (2001). Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science, 291(5512), 2417-2419. https://doi.org/10.1126/science.1058165
Botreau, F., Paolone, G., & Stewart, J. (2006). d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res, 172(1), 173-178. https://doi.org/10.1016/j.bbr.2006.05.012
Bouton, M. E., Maren, S., & McNally, G. P. (2021). Behavioral and Neurobiological Mechanisms of Pavlovian and Instrumental Extinction Learning. Physiol Rev, 101(2), 611-681. https://doi.org/10.1152/physrev.00016.2020
Brecht, M. L., & Herbeck, D. (2014). Time to relapse following treatment for methamphetamine use: a long-term perspective on patterns and predictors. Drug Alcohol Depend, 139, 18-25. https://doi.org/10.1016/j.drugalcdep.2014.02.702
Cadoni, C., & Di Chiara, G. (1999). Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and in the dorsal caudate-putamen in rats sensitized to morphine. Neuroscience, 90(2), 447-455. https://doi.org/10.1016/s0306-4522(98)00466-7
Cadoni, C., Solinas, M., & Di Chiara, G. (2000). Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. Eur J Pharmacol, 388(1), 69-76. https://doi.org/10.1016/s0014-2999(99)00824-9
Cheriyan, J., Kaushik, M. K., Ferreira, A. N., & Sheets, P. L. (2016). Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. eNeuro, 3(2). https://doi.org/10.1523/ENEURO.0002-16.2016
Chu, C. S., Li, C. T., Brunoni, A. R., Yang, F. C., Tseng, P. T., Tu, Y. K., Stubbs, B., Carvalho, A. F., Thompson, T., Rajji, T. K., Yeh, T. C., Tsai, C. K., Chen, T. Y., Li, D. J., Hsu, C. W., Wu, Y. C., Yu, C. L., & Liang, C. S. (2021). Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer's disease and mild cognitive impairment: a component network meta-analysis. J Neurol Neurosurg Psychiatry, 92(2), 195-203. https://doi.org/10.1136/jnnp-2020-323870
Conklin, C. A., & Tiffany, S. T. (2002). Applying extinction research and theory to cue-exposure addiction treatments. Addiction, 97(2), 155-167. https://doi.org/10.1046/j.1360-0443.2002.00014.x
Courtney, K. E., & Ray, L. A. (2014). Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend, 143, 11-21. https://doi.org/10.1016/j.drugalcdep.2014.08.003
Cruickshank, C. C., & Dyer, K. R. (2009). A review of the clinical pharmacology of methamphetamine. Addiction, 104(7), 1085-1099. https://doi.org/10.1111/j.1360-0443.2009.02564.x
Cruz, A. M., Kim, T. H., & Smith, R. J. (2021). Monosynaptic Retrograde Tracing From Prelimbic Neuron Subpopulations Projecting to Either Nucleus Accumbens Core or Rostromedial Tegmental Nucleus. Front Neural Circuits, 15, 639733. https://doi.org/10.3389/fncir.2021.639733
Darmani, G., Bergmann, T. O., Butts Pauly, K., Caskey, C. F., de Lecea, L., Fomenko, A., Fouragnan, E., Legon, W., Murphy, K. R., Nandi, T., Phipps, M. A., Pinton, G., Ramezanpour, H., Sallet, J., Yaakub, S. N., Yoo, S. S., & Chen, R. (2022). Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol, 135, 51-73. https://doi.org/10.1016/j.clinph.2021.12.010
Del Arco, A., & Mora, F. (2008). Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav, 90(2), 226-235. https://doi.org/10.1016/j.pbb.2008.04.011
di Biase, L., Falato, E., & Di Lazzaro, V. (2019). Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front Neurol, 10, 549. https://doi.org/10.3389/fneur.2019.00549
Di Ciano, P., & Everitt, B. J. (2004). Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci, 24(32), 7167-7173. https://doi.org/10.1523/JNEUROSCI.1581-04.2004
Donnelly, N. A., Holtzman, T., Rich, P. D., Nevado-Holgado, A. J., Fernando, A. B., Van Dijck, G., Holzhammer, T., Paul, O., Ruther, P., Paulsen, O., Robbins, T. W., & Dalley, J. W. (2014). Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome. PLoS One, 9(10), e111300. https://doi.org/10.1371/journal.pone.0111300
Egashira, Y., Mori, Y., Yanagawa, Y., & Takamori, S. (2018). Development of lentiviral vectors for efficient glutamatergic-selective gene expression in cultured hippocampal neurons. Sci Rep, 8(1), 15156. https://doi.org/10.1038/s41598-018-33509-5
Felsenberg, J., Jacob, P. F., Walker, T., Barnstedt, O., Edmondson-Stait, A. J., Pleijzier, M. W., Otto, N., Schlegel, P., Sharifi, N., Perisse, E., Smith, C. S., Lauritzen, J. S., Costa, M., Jefferis, G., Bock, D. D., & Waddell, S. (2018). Integration of Parallel Opposing Memories Underlies Memory Extinction. Cell, 175(3), 709-722 e715. https://doi.org/10.1016/j.cell.2018.08.021
Feltenstein, M. W., & See, R. E. (2013). Systems level neuroplasticity in drug addiction. Cold Spring Harb Perspect Med, 3(5), a011916. https://doi.org/10.1101/cshperspect.a011916
Fowler, J. S., Volkow, N. D., Logan, J., Alexoff, D., Telang, F., Wang, G. J., Wong, C., Ma, Y., Kriplani, A., Pradhan, K., Schlyer, D., Jayne, M., Hubbard, B., Carter, P., Warner, D., King, P., Shea, C., Xu, Y., Muench, L., & Apelskog, K. (2008). Fast uptake and long-lasting binding of methamphetamine in the human brain: comparison with cocaine. Neuroimage, 43(4), 756-763. https://doi.org/10.1016/j.neuroimage.2008.07.020
Francis, T. C., Yano, H., Demarest, T. G., Shen, H., & Bonci, A. (2019). High-Frequency Activation of Nucleus Accumbens D1-MSNs Drives Excitatory Potentiation on D2-MSNs. Neuron, 103(3), 432-444 e433. https://doi.org/10.1016/j.neuron.2019.05.031
Fuchs, R. A., Evans, K. A., Ledford, C. C., Parker, M. P., Case, J. M., Mehta, R. H., & See, R. E. (2005). The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology, 30(2), 296-309. https://doi.org/10.1038/sj.npp.1300579
Gass, J. T., & Olive, M. F. (2009). Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol Psychiatry, 65(8), 717-720. https://doi.org/10.1016/j.biopsych.2008.11.001
Gore, F., Schwartz, E. C., Brangers, B. C., Aladi, S., Stujenske, J. M., Likhtik, E., Russo, M. J., Gordon, J. A., Salzman, C. D., & Axel, R. (2015). Neural Representations of Unconditioned Stimuli in Basolateral Amygdala Mediate Innate and Learned Responses. Cell, 162(1), 134-145. https://doi.org/10.1016/j.cell.2015.06.027
Hajos, N. (2021). Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits, 15, 687257. https://doi.org/10.3389/fncir.2021.687257
Hall, M. G., Hauson, A. O., Wollman, S. C., Allen, K. E., Connors, E. J., Stern, M. J., Kimmel, C. L., Stephan, R. A., Sarkissians, S., Barlet, B. D., & Grant, I. (2018). Neuropsychological comparisons of cocaine versus methamphetamine users: A research synthesis and meta-analysis. Am J Drug Alcohol Abuse, 44(3), 277-293. https://doi.org/10.1080/00952990.2017.1355919
Hamlin, A. S., Clemens, K. J., & McNally, G. P. (2008). Renewal of extinguished cocaine-seeking. Neuroscience, 151(3), 659-670. https://doi.org/10.1016/j.neuroscience.2007.11.018
Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience & Biobehavioral Reviews, 27(6), 555-579. https://doi.org/10.1016/j.neubiorev.2003.09.003
Hou, X. F., Zhao, Y. B., Yang, Y. X., Zhu, J., Zhu, L. S., Xu, L., & Zhou, Q. X. (2023). A morphine reward generalization mouse model based on conditioned place preference and aversion. Brain Behav, 13(5), e2970. https://doi.org/10.1002/brb3.2970
Huang, C. H., Yu, Y. J., Chang, C. H., & Gean, P. W. (2016). Involvement of metabotropic glutamate receptor 5 in the inhibition of methamphetamine-associated contextual memory after prolonged extinction training. J Neurochem, 137(2), 216-225. https://doi.org/10.1111/jnc.13525
Jansen, J. M., Daams, J. G., Koeter, M. W., Veltman, D. J., van den Brink, W., & Goudriaan, A. E. (2013). Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev, 37(10 Pt 2), 2472-2480. https://doi.org/10.1016/j.neubiorev.2013.07.009
Kaminska, B., Caballero, J. P., & Moorman, D. E. (2021). Integration of value and action in medial prefrontal neural systems. Int Rev Neurobiol, 158, 57-82. https://doi.org/10.1016/bs.irn.2020.11.007
Khakpoor, M., Vaseghi, S., Mohammadi-Mahdiabadi-Hasani, M. H., & Nasehi, M. (2021). The effect of GABA-B receptors in the basolateral amygdala on passive avoidance memory impairment induced by MK-801 in rats. Behav Brain Res, 409, 113313. https://doi.org/10.1016/j.bbr.2021.113313
Kida, S. (2023). Interaction between reconsolidation and extinction of fear memory. Brain Res Bull, 195, 141-144. https://doi.org/10.1016/j.brainresbull.2023.02.009
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217-238. https://doi.org/10.1038/npp.2009.110
Kruse, O., Klein, S., Tapia Leon, I., Stark, R., & Klucken, T. (2020). Amygdala and nucleus accumbens involvement in appetitive extinction. Hum Brain Mapp, 41(7), 1833-1841. https://doi.org/10.1002/hbm.24915
Kufahl, P. R., Hood, L. E., Nemirovsky, N. E., Barabas, P., Halstengard, C., Villa, A., Moore, E., Watterson, L. R., & Olive, M. F. (2012). Positive Allosteric Modulation of mGluR5 Accelerates Extinction Learning but Not Relearning Following Methamphetamine Self-Administration. Front Pharmacol, 3, 194. https://doi.org/10.3389/fphar.2012.00194
Laurent, V., Marchand, A. R., & Westbrook, R. F. (2008). The basolateral amygdala is necessary for learning but not relearning extinction of context conditioned fear. Learn Mem, 15(5), 304-314. https://doi.org/10.1101/lm.928208
Laurent, V., & Westbrook, R. F. (2010). Role of the basolateral amygdala in the reinstatement and extinction of fear responses to a previously extinguished conditioned stimulus. Learn Mem, 17(2), 86-96. https://doi.org/10.1101/lm.1655010
Lee, W. C., Chang, H. M., Huang, M. C., Pan, C. H., Su, S. S., Tsai, S. Y., Chen, C. C., & Kuo, C. J. (2021). All-cause and suicide mortality among people with methamphetamine use disorder: a nation-wide cohort study in Taiwan. Addiction, 116(11), 3127-3138. https://doi.org/10.1111/add.15501
Lex, A., & Hauber, W. (2008). Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn Mem, 15(7), 483-491. https://doi.org/10.1101/lm.978708
Li, J.-Y., Yu, Y.-J., Su, C.-L., Shen, Y.-Q., Chang, C.-H., & Gean, P.-W. (2023). Modulation of methamphetamine memory reconsolidation by neural projection from basolateral amygdala to nucleus accumbens. Neuropsychopharmacology, 48(3), 478-488. https://doi.org/10.1038/s41386-022-01417-y
Liu, J. F., & Li, J. X. (2018). Drug addiction: a curable mental disorder? Acta Pharmacol Sin, 39(12), 1823-1829. https://doi.org/10.1038/s41401-018-0180-x
Liu, J. F., Tian, J., & Li, J. X. (2019). Modulating reconsolidation and extinction to regulate drug reward memory. Eur J Neurosci, 50(3), 2503-2512. https://doi.org/10.1111/ejn.14072
Mauk, M. D., & Ohyama, T. (2004). Extinction as new learning versus unlearning: considerations from a computer simulation of the cerebellum. Learn Mem, 11(5), 566-571. https://doi.org/10.1101/lm.83504
McFarland, K., & Kalivas, P. W. (2001). The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci, 21(21), 8655-8663. https://doi.org/10.1523/jneurosci.21-21-08655.2001
McFarland, K., Lapish, C. C., & Kalivas, P. W. (2003). Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci, 23(8), 3531-3537. https://doi.org/10.1523/jneurosci.23-08-03531.2003
McKendrick, G., & Graziane, N. M. (2020). Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci, 14, 582147. https://doi.org/10.3389/fnbeh.2020.582147
Morais, A. P. D., Pita, I. R., Fontes-Ribeiro, C. A., & Pereira, F. C. (2018). The neurobiological mechanisms of physical exercise in methamphetamine addiction. CNS Neurosci Ther, 24(2), 85-97. https://doi.org/10.1111/cns.12788
Myers, K. M., & Carlezon, W. A., Jr. (2012). D-cycloserine effects on extinction of conditioned responses to drug-related cues. Biol Psychiatry, 71(11), 947-955. https://doi.org/10.1016/j.biopsych.2012.02.030
Myers, K. M., Carlezon, W. A., Jr., & Davis, M. (2011). Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology, 36(1), 274-293. https://doi.org/10.1038/npp.2010.88
Nader, M. A. (2016). Animal models for addiction medicine: From vulnerable phenotypes to addicted individuals. Prog Brain Res, 224, 3-24. https://doi.org/10.1016/bs.pbr.2015.07.012
Nectow, A. R., & Nestler, E. J. (2020). Viral tools for neuroscience. Nat Rev Neurosci, 21(12), 669-681. https://doi.org/10.1038/s41583-020-00382-z
Nicola, S. M. (2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl), 191(3), 521-550. https://doi.org/10.1007/s00213-006-0510-4
O'Neill, P. K., Gore, F., & Salzman, C. D. (2018). Basolateral amygdala circuitry in positive and negative valence. Curr Opin Neurobiol, 49, 175-183. https://doi.org/10.1016/j.conb.2018.02.012
Pariyadath, V., Gowin, J. L., & Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: From individual loci to complex networks. Prog Brain Res, 224, 155-173. https://doi.org/10.1016/bs.pbr.2015.07.015
Penha Farias, C., Guerino Furini, C. R., Godfried Nachtigall, E., Kielbovicz Behling, J. A., Silva de Assis Brasil, E., Buhler, L., Izquierdo, I., & de Carvalho Myskiw, J. (2019). Extinction learning with social support depends on protein synthesis in prefrontal cortex but not hippocampus. Proc Natl Acad Sci U S A, 116(5), 1765-1769. https://doi.org/10.1073/pnas.1815893116
Perrotta, D., & Perri, R. L. (2022). Mini-review: When neurostimulation joins cognitive-behavioral therapy. On the need of combining evidence-based treatments for addiction disorders. Neurosci Lett, 777, 136588. https://doi.org/10.1016/j.neulet.2022.136588
Peters, J., Kalivas, P. W., & Quirk, G. J. (2009). Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem, 16(5), 279-288. https://doi.org/10.1101/lm.1041309
Pettorruso, M., Miuli, A., Di Natale, C., Montemitro, C., Zoratto, F., De Risio, L., d'Andrea, G., Dannon, P. N., Martinotti, G., & di Giannantonio, M. (2021). Non-invasive brain stimulation targets and approaches to modulate gambling-related decisions: A systematic review. Addict Behav, 112, 106657. https://doi.org/10.1016/j.addbeh.2020.106657
Piantadosi, P. T., Yeates, D. C. M., & Floresco, S. B. (2020). Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking. Learn Mem, 27(10), 429-440. https://doi.org/10.1101/lm.051912.120
Prakash, M. D., Tangalakis, K., Antonipillai, J., Stojanovska, L., Nurgali, K., & Apostolopoulos, V. (2017). Methamphetamine: Effects on the brain, gut and immune system. Pharmacol Res, 120, 60-67. https://doi.org/10.1016/j.phrs.2017.03.009
Price, M. E., & McCool, B. A. (2022). Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection-and Sex-Specific Manner. Front Cell Neurosci, 16, 857550. https://doi.org/10.3389/fncel.2022.857550
Puaud, M., Higuera-Matas, A., Brunault, P., Everitt, B. J., & Belin, D. (2021). The Basolateral Amygdala to Nucleus Accumbens Core Circuit Mediates the Conditioned Reinforcing Effects of Cocaine-Paired Cues on Cocaine Seeking. Biol Psychiatry, 89(4), 356-365. https://doi.org/10.1016/j.biopsych.2020.07.022
Reissner, K. J., & Kalivas, P. W. (2013). Common Mechanisms of Addiction. In Biological Research on Addiction (pp. 161-168). https://doi.org/10.1016/b978-0-12-398335-0.00017-0
Rocha, A., & Kalivas, P. W. (2010). Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking. Eur J Neurosci, 31(5), 903-909. https://doi.org/10.1111/j.1460-9568.2010.07134.x
Rosen, A. C., Ramkumar, M., Nguyen, T., & Hoeft, F. (2009). Noninvasive transcranial brain stimulation and pain. Curr Pain Headache Rep, 13(1), 12-17. https://doi.org/10.1007/s11916-009-0004-2
Rossi, L. M., Reverte, I., Ragozzino, D., Badiani, A., Venniro, M., & Caprioli, D. (2020). Role of nucleus accumbens core but not shell in incubation of methamphetamine craving after voluntary abstinence. Neuropsychopharmacology, 45(2), 256-265. https://doi.org/10.1038/s41386-019-0479-4
Salgado, S., & Kaplitt, M. G. (2015). The Nucleus Accumbens: A Comprehensive Review. Stereotactic and Functional Neurosurgery, 93(2), 75-93. https://doi.org/10.1159/000368279
Sangha, S., Scheibenstock, A., Morrow, R., & Lukowiak, K. (2003). Extinction requires new RNA and protein synthesis and the soma of the cell right pedal dorsal 1 in Lymnaea stagnalis. J Neurosci, 23(30), 9842-9851. https://doi.org/10.1523/jneurosci.23-30-09842.2003
Schroeder, J. P., & Packard, M. G. (2004). Facilitation of memory for extinction of drug-induced conditioned reward: role of amygdala and acetylcholine. Learn Mem, 11(5), 641-647. https://doi.org/10.1101/lm.78504
Scofield, M. D., Heinsbroek, J. A., Gipson, C. D., Kupchik, Y. M., Spencer, S., Smith, A. C., Roberts-Wolfe, D., & Kalivas, P. W. (2016). The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev, 68(3), 816-871. https://doi.org/10.1124/pr.116.012484
See, R. E. (2005). Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol, 526(1-3), 140-146. https://doi.org/10.1016/j.ejphar.2005.09.034
Senn, V., Wolff, S. B., Herry, C., Grenier, F., Ehrlich, I., Grundemann, J., Fadok, J. P., Muller, C., Letzkus, J. J., & Luthi, A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 81(2), 428-437. https://doi.org/10.1016/j.neuron.2013.11.006
Shaham, Y., Shalev, U., Lu, L., de Wit, H., & Stewart, J. (2003). The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl), 168(1-2), 3-20. https://doi.org/10.1007/s00213-002-1224-x
Sharp, B. M. (2019). Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: Pharmacological effects and addiction in animal models and humans. Eur J Neurosci, 50(3), 2247-2254. https://doi.org/10.1111/ejn.13970
Shrestha, P., Katila, N., Lee, S., Seo, J. H., Jeong, J. H., & Yook, S. (2022). Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother, 154, 113591. https://doi.org/10.1016/j.biopha.2022.113591
Simon, S. L., Domier, C. P., Sim, T., Richardson, K., Rawson, R. A., & Ling, W. (2002). Cognitive performance of current methamphetamine and cocaine abusers. J Addict Dis, 21(1), 61-74. https://doi.org/10.1300/j069v21n01_06
Soares-Cunha, C., Coimbra, B., Domingues, A. V., Vasconcelos, N., Sousa, N., & Rodrigues, A. J. (2018). Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation. eNeuro, 5(2). https://doi.org/10.1523/ENEURO.0386-18.2018
Spampanato, J., Polepalli, J., & Sah, P. (2011). Interneurons in the basolateral amygdala. Neuropharmacology, 60(5), 765-773. https://doi.org/10.1016/j.neuropharm.2010.11.006
Steinberg, E. E., Boivin, J. R., Saunders, B. T., Witten, I. B., Deisseroth, K., & Janak, P. H. (2014). Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One, 9(4), e94771. https://doi.org/10.1371/journal.pone.0094771
Sternson, S. M., & Roth, B. L. (2014). Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci, 37, 387-407. https://doi.org/10.1146/annurev-neuro-071013-014048
Stuber, G. D., Sparta, D. R., Stamatakis, A. M., van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., Tye, K. M., Kempadoo, K. A., Zhang, F., Deisseroth, K., & Bonci, A. (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475(7356), 377-380. https://doi.org/10.1038/nature10194
Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J., & Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci, 24(20), 4787-4795. https://doi.org/10.1523/JNEUROSCI.5491-03.2004
Thanos, P. K., Bermeo, C., Wang, G. J., & Volkow, N. D. (2009). D-cycloserine accelerates the extinction of cocaine-induced conditioned place preference in C57bL/c mice. Behav Brain Res, 199(2), 345-349. https://doi.org/10.1016/j.bbr.2008.12.025
Totterdell, S., & Meredith, G. E. (1997). Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience, 78(3), 715-729. https://doi.org/10.1016/s0306-4522(96)00592-1
Van den Oever, M. C., Spijker, S., Smit, A. B., & De Vries, T. J. (2010). Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev, 35(2), 276-284. https://doi.org/10.1016/j.neubiorev.2009.11.016
Vargas, L. D. S., Lima, K. R., & Mello-Carpes, P. B. (2021). Infralimbic and prelimbic prefrontal cortex activation is necessary to the enhancement of aversive memory extinction promoted by reactivation. Brain Res, 1770, 147630. https://doi.org/10.1016/j.brainres.2021.147630
Venniro, M., Caprioli, D., & Shaham, Y. (2016). Animal models of drug relapse and craving: From drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog Brain Res, 224, 25-52. https://doi.org/10.1016/bs.pbr.2015.08.004
Veres, J. M., Andrasi, T., Nagy-Pal, P., & Hajos, N. (2023). CaMKIIα Promoter-Controlled Circuit Manipulations Target Both Pyramidal Cells and Inhibitory Interneurons in Cortical Networks. eNeuro, 10(4). https://doi.org/10.1523/eneuro.0070-23.2023
Visser, E., Matos, M. R., Mitric, M. M., Kramvis, I., van der Loo, R. J., Mansvelder, H. D., Smit, A. B., & van den Oever, M. C. (2022). Extinction of Cocaine Memory Depends on a Feed-Forward Inhibition Circuit Within the Medial Prefrontal Cortex. Biol Psychiatry, 91(12), 1029-1038. https://doi.org/10.1016/j.biopsych.2021.08.008
Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci, 27(8), 468-474. https://doi.org/10.1016/j.tins.2004.06.006
Willcocks, A. L., & McNally, G. P. (2013). The role of medial prefrontal cortex in extinction and reinstatement of alcohol-seeking in rats. Eur J Neurosci, 37(2), 259-268. https://doi.org/10.1111/ejn.12031
Yang, L. Z., Yang, Z., & Zhang, X. (2016). Non-invasive Brain Stimulation for the Treatment of Nicotine Addiction: Potential and Challenges. Neurosci Bull, 32(6), 550-556. https://doi.org/10.1007/s12264-016-0056-3