簡易檢索 / 詳目顯示

研究生: 廖思豪
Liao, Ssu-Hao
論文名稱: 氮化鎵紫外光檢測器特性改善
Characteristic Improvement of GaN-based UV Photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 88
中文關鍵詞: 氮化鎵光檢測器退火
外文關鍵詞: GaN, photodetector, annealing
相關次數: 點閱:85下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,吾人將利用不同結構與材料並搭配熱退火去改善光檢測器特性。實驗分為三個部分,首先,成功製作以Ir/Ru/Au為電極的氮化鎵光檢測器,在氧氣退火處理後,元件特性將有效的被改善。Ir/Ru/Au光檢測器在750度氧氣退火處理後具有低暗電流1.2 × 10-11 (A)、低偏壓效應等優點,因此,Ir/Ru/Au光檢測器在750度氧氣退火處理後於節能與可靠度方面具有優勢。
    第二,成功製作Ni/Au電極含LT-AlN:Mg覆蓋層的氮化鎵光檢測器,元件特性在750度氧氣退火處理後較佳。相較於無覆蓋層的光檢測器,LT-AlN:Mg光檢測器在750度氧氣退火處理後具有低暗電流 4.2 × 10-12 (A)、高光暗電流比 2.5 × 105以及優異的拒斥比 8.6 × 103等優點,因而,LT-AlN:Mg光檢測器在750度氧氣退火處理後是一省電、高靈敏度、抗可見光的優良光檢測器。
    最後,成功製作ZITO電極含HfO2絕緣層的氮化鎵光檢測器,退火處理能有效改善其元件特性。ZITO含HfO2光檢測器在550度氧氣退火具有低暗電流 8.4 × 10-12 (A)、高光暗電流比 1.2 × 105以及優異的拒斥比 2.4 × 103等優點,因而,ZITO含HfO2光檢測器在550度氧氣退火後是一省電、高靈敏度、抗可見光的優良光檢測器。

    In this thesis, we use different structure and material with thermal annealing treatment to improve the characteristics of PDs. The experiment is divided into three parts. First, the GaN PDs with Ir/Ru/Au electrodes are successful fabricated. After the O2 annealing process, the device characters will be effectively improved. The Ir/Ru/Au PD after O2 annealing treatment at 750 ℃ has the advantages such as low dark current 1.2 × 10-11 (A) and low bias effect. Thus, the Ir/Ru/Au PD after O2 annealing treatment at 750 ℃ is good at power saving and excellent reliability.
    Second, the GaN PDs of Ni/Au electrodes with LT-AlN:Mg cap layer are successful fabricated. The device characters will be better after O2 annealing treatment at 750 ℃. Compared with the no cap layer PD, the LT-AlN:Mg PD after O2 annealing treatment at 750 ℃ has the advantages like low dark current 4.2 × 10-12 (A), high photo-to-dark current ratio 2.5 × 105 and good rejection ratio 8.6 × 103. So the LT-AlN:Mg PD after O2 annealing treatment at 750 ℃ is a good power saving, sensitivity and visible light rejection PD.
    Finally, the GaN PDs of ZITO electrodes with HfO2 insulator layer are successful fabricated. The annealing treatment can effectively improve the device characters. The ZITO electrodes with HfO2 PD after the O2 annealing treatment at 550 ℃ has the advantages such as low dark current 8.4 × 10-12 (A), high photo-to-dark current ratio 1.2 × 105 and good rejection ratio 2.4 × 103. Hence, the ZITO with HfO2 PD after O2 annealing treatment at 550 ℃ is a good power saving, sensitivity and visible light rejection PD.

    摘要 I Abstract II Acknowledgements IV Contents V Table captions VII Figure captions IX Chapter 1 Introduction 1 1-1 Background 1 1-2 GaN-based Material 2 1-3 GaN-based UV photodetectors 4 1-4 Motive and Experiment Structure 5 Chapter 2 Basic Theory 10 2-1 Metal-Semiconductor contact 10 2-2 Metal-Semiconductor-Metal (MSM) photodetector and Metal-Insulator-Semiconductor (MIS) photodetector 11 2-2.1 Principle of operation 12 2-2.2 Schottky Barrier Height 12 2-2.3 Dark current and Leakage current 13 2-2.4 Responsivity and Photocurrent 14 2-2.5 Metal-Insulator-Semiconductor (MIS) photodetector 18 Chapter 3 Measurement System and Device Fabrication 26 3-1 Measurement System 26 3-1.1 dark current and responsibility measurement system 26 3-1.2 Atomic Force Microscope (AFM) 27 3-1.3 Hall measurement 27 3-1.4 Transmittance 28 3-2 Device Fabrication 28 Chapter 4 Characteristics of GaN-based Photodetector with Different Electrodes and Insertions 37 4-1 MSM PDs with Ir/Ru/Au metal electrodes 37 4-1.1 Motive and device structure 37 4-1.2 Device characteristics 37 4-1.3 Summary 41 4-2 MSM PDs with a LT AlN:Mg cap layer 41 4-2.1 Motive and device structure 41 4-2.2 Device characteristics 41 4-2.3 Summary 44 4-3 MIS PD with ZITO electrodes and HfO2 insulating layer 45 4-3.1 Motive and device structure 45 4-3.2 Device characteristics 46 4-3.3 Summary 48 Chapter 5 Conclusion and Future Work 74 5-1 Conclusion 74 5-2 Future work 75 References 79

    Chapter 1
    [1] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79 (10), 15 May 1996
    [2] M.A. Khan, J. Kuznia, D.T. Olson, M. Blasingame, A.R. Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films,” Appl. Phys. Lett. 63 2455 (1993)
    [3] E Monroy, F Omn`es and F Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18 R33–R51 (2003)
    [4] Bernard Gil, Group III Nitride Semiconductor Compounds (Oxford, New York, 1998) Kazuhide Kumakuraa_ and Toshiki Makimoto, “High performance pnp AlGaN/GaN heterojunction bipolar transistors on GaN substrates,” APPLIED PHYSICS LETTERS 92, 153509 (2008)
    [5] Ramo´ n Collazo, Seiji Mita, Jinqiao Xie, Anthony Rice, James Tweedie, Rafael Dalmau, and Zlatko Sitar, “Implementation of the GaN lateral polarity junction in a MESFET utilizing polar doping selectivity,” Phys. Status Solidi A 207, No. 1, 45–48 (2010)
    [6] Bin Lu, Student Member, IEEE, and Tomás Palacios, “High Breakdown (> 1500 V) AlGaN/GaN HEMTs by Substrate-Transfer Technology,” IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 9, SEPTEMBER 2010
    [7] Xiaoxu Cheng, Miao Li, and Yan Wang, “Physics-Based Compact Model for AlGaN/GaN MODFETs With Close-Formed I–V and C–V Characteristics,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 12, DECEMBER 2009
    [8] Ray-Hua Horng, Member, IEEE, Yi-Anne Lu, and Dong-Sing Wuu, Member, IEEE “Light Extraction Study on Thin-Film GaN Light-Emitting Diodes With Electrodes Covering by Wafer Bonding and Textured Surfaces,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 10, OCTOBER 2010
    [9] Y. T. Liu, Q. Cao, G. F. Song, and L. H. Chen, “The Junction Temperature and Forward Voltage Relationship of GaN-Based Laser Diode,” Laser Physics, Vol. 19, No. 3, pp. 400–402, 2009
    [10] Jae-Phil Shim, Seong-Ran Jeon, Yon-Kil Jeong, and Dong-Seon Lee, “Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 10, OCTOBER 2010
    [11] Chin-Hsiang Chen, Shoou-Jinn Chang, Ming-Hsien Wu, Sung-Yi Tsai, and Hsiu-Ju Chien, “AlGaN Metal–Semiconductor–Metal Photodetectors with Low-Temperature AlN Cap Layer and Recessed Electrodes,” Japanese Journal of Applied Physics 49 (2010)
    [12] J A Garrido, E Monroy, I Izpura and E Mu˜noz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13 563–568 (1998)
    [13] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes,” IEEE J Quantum Electron., vol. 39, pp. 681–685, May 2003.
    [14] M. L. Lee and J. K. Sheu, “GaN-Based Ultraviolet p-i-n Photodiodes with Buried p-Layer Structure Grown by MOVPE,” Journal of The Electrochemical Society, 154 (3) H182-H184 (2007)
    [15] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71 (16), 20 October 1997
    [16] Ching-Ting Lee, Chih-Chien Lin, Hsin-Ying Lee, and Po-Sung Chen, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors,” JOURNAL OF APPLIED PHYSICS 103, 094504 (2008)
    [17] K. H. Lee, P. C. Chang, S. J. Chang, Member, IEEE, Y. C. Wang, C. L. Yu, and S. L. Wu, “Characterization of AlGaN/GaN Metal-Semiconductor-Metal Photodetectors With a Low-Temperature AlGaN Interlayer,” IEEE SENSORS JOURNAL, VOL. 9, NO. 6, JUNE 2009
    [18] M. Yonemaru, A. Kikuchi, and K. Kishino, “Improved Responsivity of AlGaN-Based Resonant Cavity-Enhanced UV Photodetectors Grown on Sapphire by RF-MBE,” phys. stat. sol. (a) 192, No. 2, 292–295 (2002)
    [19] W. Y. Weng, S. J. Chang, Member, IEEE, W. C. Lai, T. J. Hsueh, S. C. Shei, X. F. Zeng, S. L. Wu, and S. C. Hung, “GaN MSM Photodetectors With a Semi-Insulating Mg-Doped AlInN Cap Layer,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 8, APRIL 15, 2009
    [20] Y. K. Su, Fellow, IEEE, S. J. Chang, Member, IEEE, Y. D. Jhou, S. L. Wu, and C. H. Liu, “GaN Metal–Semiconductor–Metal Photodetectors With SiN/GaN Nucleation Layer,” IEEE SENSORS JOURNAL, VOL. 8, NO. 10, OCTOBER 2008
    [21] C. L. Yu, C. H. Chen, S. J. Chang, Y. K. Su, Senior Member, IEEE, S. C. Chen, P. C. Chang, P. C. Chen, M. H. Wu, H. C. Chen, and K. C. Su, “In0:37Ga0:63N Metal–Semiconductor–Metal Photodetectors With Recessed Electrodes,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 4, APRIL 2005
    [22] Jong Kyu Kim and Jong-Lam Lee, “GaN MSM Ultraviolet Photodetectors with Transparent and Thermally Stable RuO2 and IrO2 Schottky Contacts,” Journal of The Electrochemical Society, 151 (3) G190-G195 (2004)
    [23] N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, T. Jimbo, “Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal,” Solid-State Electronics 48 689–695 (2004)
    [24] Yu-Zung CHIOU, Yan-Kuin SU, Shoou-Jinn CHANG, Jone F. CHEN, Chia-Sheng CHANG, Sen-Hai LIU, Yi-Chao LIN and Chin-Hsiang CHEN, “Transparent TiN Electrodes in GaN Metal–Semiconductor–Metal Ultraviolet Photodetectors,” Jpn. J. Appl. Phys. Vol. 41 pp. 3643–3645 (2002)
    [25] Jun OHSAWA, Takahiro KOZAWA, Hideki MIURA, Osamu FUJISHIMA and Hiroshi ITOH, “Comparison of Spectral Responses between Front- and Back-Incidence Configurations in GaN Metal–Semiconductor–Metal Photodetector on Sapphire,” Jpn. J. Appl. Phys., Vol. 44, No. 12 (2005)
    [26] S. J. Chang, Member, IEEE, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, and T. P. Chen, “GaN Metal–Semiconductor–Metal Photodetectors Prepared on Nanorod Template,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 9, MAY 1, 2010
    [27] Y. Z. Chiou, “Failure Mechanisms of GaN Metal–Semiconductor–Metal Photodetectors After Stressing,” IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 10, NO. 1, MARCH 2010
    [28] J. K. Sheu, K. H. Chang, and M. L. Lee, “Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN,” APPLIED PHYSICS LETTERS 92, 113512 (2008)
    [29] P.C. Chang, K.T. Lam, C.H. Chen, S.J. Chang, C.L. Yu and C.H. Liu, “AlGaN/GaN two-dimensional electron gas metal-insulator-semiconductor photodetectors with sputtered SiO2 layers,” IET Optoelectron., 2, (1), pp. 55–57, 2008
    [30] DONG-SING WUU, SHUN-CHEN HSU, RAY-HUA HORNG, “Improvements of transparent electrode materials for GaN metal-semiconductor-metal photodetectors,” JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 15 793-796 (2004)
    [31] K. H. Lee,a P. C. Chang,b,z S. J. Chang,a C. L. Yu,a Y. C. Wang,a and S. L. Wuc, “Visible-Blind Metal–Semiconductor–Metal Photodetectorsby Capping an In Situ Low-Temperature AlN Layer,” Journal of The Electrochemical Society, 155 (10) J287-J289 (2008)
    [32] Yan-Kuin SU, Yu-Zung CHIOU, Fuh-Shyang JUANG, Shoou-Jin CHANG and Jinn-Kung SHEU, “GaN and InGaN Metal-Semiconductor-Metal Photodetectors with Different Schottky Contact Metals,” Jpn. J. Appl. Phys. 40 pp. 2996-2999 (2001)
    [33] 翁彰鍵, 《成長於矽基板上之氮化鎵系列光檢測器》 ,碩士論文,成功大學微電子工程研究所,民國95年6月

    Chapter 2
    [34] Prof. E.H. Rhoderick, M.A., M.Sc., Ph.D., C.Eng., F.lnst. P., F.I.E.E., “Metal-semiconductor contacts,” IEEPROC, Vol. 129, Pt. I, No. 1, FEBRUARY 1982
    [35] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79 (10), 15 May 1996
    [36] 李宜祐, 《表面處理及其應用於氮化鎵系列光電元件之研究》 ,碩士論文,成功大學微電子工程研究所,民國96年6月
    [37] D. A. Neamen, Semiconductor Physics & Devices, IRWIN, 1997
    [38] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” APPLIED PHYSICS LETTERS VOLUME 72, NUMBER 5, 2 FEBRUARY, 1998
    [39] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11, 1 JUNE 1998
    [40] Jong Kyu Kim and Jong-Lam Lee, “GaN MSM Ultraviolet Photodetectors with Transparent and Thermally Stable RuO2 and IrO2 Schottky Contacts,” Journal of The Electrochemical Society, 151 (3) G190-G195 (2004)
    [41] 施敏 原著,黃調元 譯, 《半導體元件物理及製作技術》 ,第二版, 《國立交通大學出版社,新竹,2002》427 頁~434 頁
    [42] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” APPLIED PHYSICS LETTERS VOLUME 79, NUMBER 10, 3 SEPTEMBER 2001
    [43] O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” APPLIED PHYSICS LETTERS VOLUME 84, NUMBER 20, 17 MAY 2004
    [44] S.J. Peartona, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30 55-212 (2000)
    [45] R. F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Company, 1996
    [46] 施敏 原著,黃調元 譯, 《半導體元件物理及製作技術》 ,第二版, 《國立交通大學出版社,新竹,2002》342 頁~344 頁

    Chapter 4
    [47] M. W. Cole, F. Ren and S. J. Pearton, “Post growth rapid thermal annealing of GaN: The relationship between annealing temperature, GaN crystal quality, and contact-GaN interfacial structure,” Appl. Phys. Lett. 71 (20), 17 November 1997
    [48] Jong Kyu, Kim and Jong-Lam Lee, “GaN MSM Ultraviolet Photodetectors with Transparent and Thermally Stable RuO2 and IrO2 Schottky Contacts,” Journal of The Electrochemical Society, 151 (3) G190-G195 (2004)
    [49] H. Jiang, T. Egawa, H. Ishikawa, Y.B. Dou, C.L. Shao and T. Jimbo, “Low dark current GaN Schottky UV photodiodes using oxidized IrNi Schottky contact,” ELECTRONICS LETTERS 30th Vol. 39 No. 22 October 2003
    [50] P C Chang, C H Chen, S J Chang, Y K Su, C L Yu, P C Chen3 and C H Wang, “AlGaN/GaN MSM photodetectors with photo-CVD annealed Ni/Au semi-transparent contacts,” Semicond. Sci. Technol. 19 1354–1357 (2004)
    [51] K. H. Lee, P. C. Chang, S. J. Chang, C. L. Yu, Y. C. Wang, and S. L. Wu, “Visible-Blind Metal–Semiconductor–Metal Photodetectors by Capping an In Situ Low-Temperature AlN Layer,” Journal of The Electrochemical Society, 155 (10) J287-J289 (2008)
    [52] K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,” APPLIED PHYSICS LETTERS VOLUME 83, NUMBER 5, 4 AUGUST 2003
    [53] D. J. Chen, B. Liu, H. Lu, Z. L. Xie, R. Zhang, and Y. D. Zheng, “Improved Performances of InGaN Schottky Photodetectors by Inducing a Thin Insulator Layer and Mesa Process,” IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 6, JUNE 2009.
    [54] S J Chang, C L Yu, P C Chang, Y C Lin1 and C H Chen, “Nitride-based MIS-like diodes with semi-insulating Mg-doped GaN cap layers,” Semicond. Sci. Technol. 21 1422–1424 (2006)
    [55] Paz Carreras, Aldrin Antony*, Rubén Roldán, Oriol Nos, Paolo Antonio Frigeri, José Miguel Asensi, and Joan Bertomeu, “Transparent conducting thin films by co-sputtering of ZnO-ITO targets,” Phys. Status Solidi C 7, No. 3–4, 953– 956 (2010)
    [56] C. H. Chen, S. J. Chang, Y. K. Su, Senior Member, IEEE, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, Member, IEEE, “GaN Metal–Semiconductor–Metal Ultraviolet Photodetectors With Transparent Indium–Tin–Oxide Schottky Contacts,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 13, NO. 8, AUGUST 2001.
    [57] 黃國瑋, 《熱處理條件對氧化鉿與矽酸鉿薄膜特性的影響》 ,碩士論文,國立成功大學電機工程研究所,民國97年6月
    [58] P.C. Chang, K.T. Lam, C.H. Chen, S.J. Chang, C.L. Yu and C.H. Liu, “AlGaN/GaN two-dimensional electron gas metal-insulator-semiconductor photodetectors with sputtered SiO2 layers,” IET Optoelectron., 2, (1), pp. 55–57, 2008
    [59] 林志雄, 《使用反應濺鍍法於塑膠基板上製鍍抗反射膜之研究》 ,碩士論文,國立中央大學光電科學與工程學系,民國97年1月
    [60] J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71 (18), 3 November 1997
    [61] Cheng-Pin Chen, Pei-HsuanLin, Liang-Yi Chen,Min-YungKe, Yun-Wei Cheng1 and JianJang Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology 20 245204 (6pp) (2009)
    [62] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 10, 15 MAY 2001

    下載圖示 校內:2016-07-13公開
    校外:2016-07-13公開
    QR CODE