| 研究生: |
施富文 Shih, Fu-Wen |
|---|---|
| 論文名稱: |
在LaMn2Si2 和 LaMnCuSi2下3d磁矩結構和自旋凍結之共存 Coexistence of strong 3d magnetic structures and spin-freezing behaviors in LaMn2Si2 and LaMnCuSi2 |
| 指導教授: |
田聰
Tien, Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 磁矩結構 、自旋凍結 |
| 外文關鍵詞: | LaMn2Si2, strong 3d magnetic structures, spin-freezing, LaMnCuSi2 |
| 相關次數: | 點閱:107 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究了LaMn2Si2和LaMnCuSi2的磁化特性。就LaMn2Si2而言,我們的實驗結果跟中子繞射與梅思堡量測的結果一致。在量測LaMn2Si2的直流零磁冷卻(Zreo-field cooling,ZFC)磁化強度 MZFC和磁冷卻(Field cooling,FC)磁化強度 MFC中,我們發現在0.1 kOe的磁場下,MZFC會在305K時開始跟MFC分開。但在量測LaMn2Si2的交流磁化率 χac下,沒有發現到形成自旋玻璃態所需的峰值(peak)。因此,儘管零磁冷和磁冷之磁化強度會,但是無法在LaMn2Si2裡形成自旋玻璃相。當有 50% 的Mn離子被Cu離子所取代掉時,發現樣本內部產生了一個由磁場引導的磁序 (field induced magnetic order) 。當溫度下降,LaMnCuSi2從順磁相變成一個(高溫)反鐵磁相,接著再變為傾斜鐵磁相(canted-ferromagnetic phase) ,最後形成(低溫)反鐵磁相。 當頻率為10 kHz 時, LaMnCuSi2交流磁化率裡的實部在 79 K有一峰值,其虛部也在63 K顯現一峰值。交流磁化率中的實部或虛部隨溫度的變化都明顯地與頻率有關,這顯示了LaMnCuSi2中自旋玻璃跟反鐵磁相的共存。 溫度為250 K時,兩者都有一小小的突起區塊。 最後我們也給出LaMnCuSi2在外加磁場下的磁相圖。
We have studied the magnetic properties of LaMn2Si2 and LaMnCuSi2. For LaMn2Si2, our measurements are consistent with the results of neutron diffraction and Mössbauer. For the dc-magnetization measurements of LaMn2Si2, MZFC(T) starts to deviate from MFC(T) at ~305 K in a magnetic field of 0.1 kOe. There is no cusp observed in the real or imaginary component of the ac-susceptibility for LaMn2Si2. Therefore, despite the deviation from MZFC(T) to MFC(T) , there is no spin-glass phase in LaMn2Si2. While 50% of Mn ions are replaced by Cu ions, there is a magnetic-field-induced antiferromagnetic order in LaMnCuSi2. As the temperature is decreasing, the magnetic phase of LaMnCuSi2 changes from a paramagnetic to an (high-temperature) antiferromagnetic, then to a canted ferromagnetic, and finally to an (low-temperature) antiferromagnetic phase. There is a peak at ~ 79 K (for 10000 Hz) in real (X’) and at ~ 63 K (for 10000 Hz) in imaginary (X”) component of ac susceptibility for LaMnCuSi2. Either X’ or X” significantly depends on the frequency, which suggest a coexistence of spin-glass and antiferromagnetic phase in LaMn2Si2. The sketch of phase diagram for LaMnCuSi2 is provided.
[1] J. A. Fernandez-Baca, Peggy Hill, B. C. Chakoumakos, and Naushad Ali, J. Appli. Phys. 79, 5398 (1996)
[2] G. Venturini, R. Welter, E. Ressouche, B. Malaman, J. Alloys Compounds 210, 213 (1994).
[3] M. Hofmann, S. J. Campbell, S. J. Kennedy and X. L. Zhao, J. Magn. Magn. Mater. 176, 279 (1997).
[4] S. Di. Napoli, G. Bihlmayer, S. Blügel, M. Alouani, H. Dreyssé, A. M. Llois, J. Magn. Magn. Mater. 272-276, e265 (2004).
[5] M. Hofmann, S. J. Campbell, K. Knorr, S. Hull, V. Ksenofontov, J. Appli. Phys. 91, 8126 (2002).
[6] S. J. Campbell, J. M. Cadogan, X. L. Zhao, M. Hofmann, and H. S. Li, J. Phys. Condens. Matter 11, 7835 (1999).
[7] I. Ijjaali, G. Venturini, B. Malaman, and E. Ressouche, J. Alloys Compd. 266, 61 (1998).
[8] G. Venturini, R. Welter, E. Resouche, B. Malaman, J. Magn. Magn. Mater. 150, 197 (1995).
[9] J. A. Mydosh, Spin Glass: An Experimental Introduction (Taylor & Francis, London, 1993)
[10] C. Tien, J. J. Lu, and L. Y. Jang, Phys. Rev. B 65, 214416-1 (2002).
[11] C. A. M. Mulder, A. J. van Duyneveldt, and J. A. Mydosh, Phys. Rev. B 25, 515 (1982).
[12] G. Liang and M. Croft, Phys. Rev. B 40, 361 (1989)
[13] 王文楠,國立成功大學物理研究所碩士論文 (1992)
[14] Charles Kittle , Introduction to Solid State Physics – Eight Edition