簡易檢索 / 詳目顯示

研究生: 徐羽柔
Hsu, Yu-Jou
論文名稱: 應用動力三軸試驗探討海床土壤之動態特性
Dynamic Properties of Seabed Soils Using Dynamic Triaxial Test
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 114
中文關鍵詞: 動力三軸試驗剪力模數阻尼比動態特性
外文關鍵詞: dynamic triaxial tests, shear modulus, damping ratio, dynamic properties
相關次數: 點閱:108下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用動力三軸系統,試驗土樣為臺灣彰化近海鑽探取得之土樣,針對海床土壤中之砂質土壤,設計三組細粒料含量(15%、30%與50%)、三種孔隙比(0.7、0.8與0.9)及四種飽和度(15%、30%、60%與100%)以濕夯法架設重模試體,於三個有效圍壓(20 kPa、80 kPa與320 kPa)下進行應變控制試驗,探討上述影響因子對於土壤動態剪力模數與阻尼比特性之影響,最後再與共振柱試驗結果相擬合,獲得海床土壤完整的動態特性曲線。由試驗結果顯示,海床土壤之正規化剪力模數隨應變增加而衰減趨勢較少,大致落在Seed和Idriss (1970)建議上界,阻尼比變化趨勢則偏建議範圍下界;孔隙比、飽和度、有效圍壓及細粒料含量皆會影響剪力模數與阻尼比,其中細粒料含量較無其他因子影響顯著。而有效圍壓增加、飽和度提升、孔隙比上升及細粒料含量下降,皆會使完整正規化剪力模數衰減曲線右移;增加有效圍壓、降低細粒料含量,完整阻尼比曲線也會呈現右移趨勢。

    This research conducts the dynamic triaxial test using the soil samples extracted from offshore near Changhua. For sandy soils in seabed soils, reconstituted specimens were designed based on fines content (15%, 30%, and 50%), void ratio (0.7, 0.8, and 0.9) and saturation (15%, 30%, 60%, and 100%) using the moist tamping technique. The dynamic triaxial tests were performed at three confining stress levels (20, 80, and 320 kPa) under displacement-controlled condition. This research investigates the influence of the above-mentioned factors on the properties of the dynamic shear modulus and damping ratio of soil. To obtain complete dynamic property curves of seabed soils, normalized shear modulus reduction curves and damping ratio curves from dynamic triaxial tests and resonance column tests were combined. According to the test results, normalized shear modulus reduction curves are roughly at the upper boundary of Seed and Idriss’s (1970) suggested range, while the damping ratio curves trend are towards the lower boundary of the suggested range. Void ratio, saturation, effective confining pressure, and fines content all affect the shear modulus and damping ratio, with fines content having a less significant effect. The increase in effective confining pressure, saturation, and porosity, and the decrease in fines content will move the complete shear modulus reduction curves to the right side. By increasing the effective confining pressure and decreasing the fines content, the complete damping ratio curves also show the rightward shift.

    摘要 I Extented Abstract II 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 1 1.3研究方法及流程 2 1.4論文內容概述 4 第二章 文獻回顧 5 2.1土壤的動態行為 5 2.1.1土壤的動態性質 5 2.1.2土壤的動態強度 9 2.2求取土壤動態特性之室內試驗 10 2.3影響土壤剪力模數之因子 13 2.3.1剪應變振幅 15 2.3.2有效圍壓 19 2.3.3飽和度 21 2.3.4孔隙比 24 2.3.5細粒料含量 26 2.4影響土壤阻尼比之因子 30 2.4.1剪應變振幅 31 2.4.2有效圍壓 33 2.4.3飽和度 34 2.4.4孔隙比 35 2.4.5細粒料含量 35 第三章 動力三軸試驗概要 36 3.1動力三軸試驗原理 36 3.1.1動力三軸應力控制試驗 36 3.1.2動力三軸應變控制試驗 38 3.2非線性模型與梅新準則 39 3.2.1高振幅剪應力與剪應變數值模型 39 3.2.2梅新準則(Masing criteria) 40 3.3土壤動態特性計算方法 41 第四章 研究規劃及研究設備 43 4.1試驗規劃 43 4.2試驗土樣 43 4.3試驗儀器及設備 46 4.4試驗方法與流程 52 4.4.1重模土樣之準備 54 4.4.2重模試體之架設 54 4.4.3試體飽和及壓密 57 4.4.4彎曲元件試驗 58 4.4.5動態加載之過程 59 第五章 試驗結果與討論 64 5.1前言 64 5.2剪力模數 64 5.2.1有效圍壓之影響 65 5.2.2飽和度之影響 67 5.2.3孔隙比之影響 72 5.2.4細粒料含量之影響 77 5.3阻尼比 83 5.3.1有效圍壓之影響 83 5.3.2飽和度之影響 85 5.3.3孔隙比之影響 87 5.3.4細粒料含量之影響 89 5.4完整動態特性曲線 92 5.4.1正規化剪力模數衰減曲線 93 5.4.2阻尼比曲線 96 第六章 結論與建議 99 6.1結論 99 6.2建議 100 參考文獻 101 附錄A 剪力波速表 108 附錄B 柏松比表 110 附錄C 完整動態特性曲線原始數據點 111

    1. Anderson, D.G., “Dynamic Modulus of Cohesive Soils,” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, pp. 311, 1974.
    2. ASTM, “Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus,” ASTM International Standard Methods, Vol. 91, No. Reapproved, pp. 1–16, 2013.
    3. Atkinson, J.H., and Sallfors, G., “Experimental Determination of Soil Properties,” Proceedings of the 10th European Conference on Soil
    Mechanics, Florence, Vol. 3, pp. 915–956, 1991.
    4. Barros, J.M.C., “Factors Affecting Dynamic Properties of Soils,” Ph.D. Thesis, University of Michigan, 1994.
    5. Das, B. M., Advanced Soil Mechanics, Taylor and Francis, Philadelphia, 1997.
    6. El Mohtar, C.S., Drnevich, V.P., Santagata, M., and Bobet, A., “Combined Resonant Column and Cyclic Triaxial Tests for Measuring Undrained Shear Modulus Reduction of Sand with Plastic Fines,” Geotechnical Testing Journal, Vol. 36, No. 4, pp. 1–9, 2013.
    7. GDS, “The GDS 2Hz/5Hz/10Hz Dynamic Testing System Hardware Handbook,” GDS Instruments Ltd., pp. 1–30, 2006.
    8. GDS, “The GDS Standard Controller/Smart Keypad Firmware Revision STDDPCv2,” GDS Instruments Ltd., pp. 4, 2006.
    9. Ghayoomi, M., Suprunenko, G., and Mirshekari, M., “Cyclic Triaxial Test to Measure Strain-Dependent Shear Modulus of Unsaturated Sand,” International Journal of Geomechanics, Vol. 17, No. 9, pp. 1–11, 2017.
    10. Gu, X., Yang, J., Huang, M., and Gao, G., “Bender Element Tests in Dry and Saturated Sand: Signal Interpretation and Result Comparison,” Soils and Foundations, Elsevier, Vol. 55, No. 5, pp. 951–962, 2015.
    11. Hardin, B., and Black, W., “Vibration Modulus of Normally Consolidated Clay,” Journal of Soil Mechanics and Foundations Division, Vol. 94, No. SM2, pp. 353–369, 1968.
    12. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division, Vol. 98, No. SM6, pp. 603–624, 1972a.
    13. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves,” Journal of Soil Mechanics and Foundations Division, Vol. 98, No. SM7, pp. 667–692, 1972b.
    14. Hardin, B.O., “The Nature of Stress-Strain Behavior for Soils,” Proceedings of the Geotechnical Division Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, California, Vol. 1, pp. 3–90, 1978.
    15. Iwasaki, T., and Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, Vol. 17, No. 3, pp. 19–35, 1977.
    16. Iwasaki, T., Tatsuoka, F., and Takagi, Y., “Shear Moduli of Sands under Cyclic Torsional Shear Loading,” Soils and Foundations, Vol. 18, No. 1, pp. 39–56, 1978.
    17. Khan, Z., El Naggar, M.H., and Cascante, G., “Frequency Dependent Dynamic Properties from Resonant Column and Cyclic Triaxial Tests,” Journal of the Franklin Institute, Elsevier, Vol. 348, No. 7, pp. 1363–1376, 2011.
    18. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall Inc., New Jersey, 1996.
    19. Kokusho, T., “Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range,” Soils and Foundations, Vol. 20, No. 2, pp. 45–60, 1980.
    20. Kuribayashi, E., Iwasaki, T., and Tatsuoka, F., “Effects of Stress-Strain Conditions on Dynamic Properties of Sands,” Proceedings of the Japan Society of Civil Engineers, No. 242, pp. 105–114, 1975.
    21. Leong, E.C., and Cheng, Z.Y., “Effects of Confining Pressure and Degree of Saturation on Wave Velocities of Soils,” International Journal of Geomechanics, Vol. 16, No. 6, pp. 1–10, 2016.
    22. Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E., and Balasubramaniam, A., “Small Strain Stiffness and Stiffness Degradation Curve of Bangkok Clays,” Soils and Foundations, Elsevier, Vol. 53, No. 4, pp. 498–509, 2013.
    23. Madhusudhan, B.N., and Kumar, J., “Damping of Sands for Varying Saturation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 9, pp. 1625–1630, 2013.
    24. Ramberg, W., and Osgood, W.R., “Description of Stress–Strain Curves by Three Parameters,” Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC., 1943.
    25. Ray, R.P., and Woods, R.D., “Modulus and Damping Due to Uniform and Variable Cyclic Loading,” Journal of Geotechnical Engineering, Vol. 114, No. 8, pp. 861–876, 1988.
    26. Seed, H.B., and Lee, K.L., “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of Soil Mechanics and Foundations Division., Vol. 92, No. SM6, pp. 105–134, 1966.
    27. Seed, H.B., and Idriss, I.M., “Soil Moduli and Damping Factors for Dynamic Response Analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, 1970.
    28. Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K., “Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils,” Journal of Geotechnical Engineering, Vol. 112, No. 11, pp. 1016–1032, 1986.
    29. SW-AJA, “Soil Behavior Under Earthquake Loading Conditions, State of the Art Evaluation of Soil Characteristics for Seismic Response Analyses: Prepared Under Subcontract,” No.3354, Union Carbide Corp., for U.S. Atomic Energy Commission, Contract No. W-7405-eng-26, 1972.
    30. Silver, M.L., “Load, Deformation and Strength Behavior of Soils under Dynamic Loadings,” Proceedings of 1st International conference on Recent Advances in Geotechnical Earthquake Engineering and soil Dynamics, pp. 873–895, 1981.
    31. Thevanayagam, S., Fiorillo, M., and Liang, J., “Effect of Non-Plastic Fines on Undrained Cyclic Strength of Silty Sands,” Soil Dynamics and Liquefaction 2000, pp. 77–91, 2000.
    32. Ueng, T., Lin, M., Li, I., Chu, C., and Lin, J., “Dynamic Characteristics of Soils in Yuan‐Lin Liquefaction Area,” Journal of the Chinese Institute of Engineers, Vol. 25, No. 5, pp. 555–565, 2002.
    33. Vucetic, M., “Cyclic Threshold Shear Strains in Soils,” Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2208–2228, 1994.
    34. Vucetic, M., and Dobry, R., “Effect of Soil Plasticity on Cyclic Response,” Journal of Geotechnical Engineering, Vol. 117, No. 1, pp. 89–107, 1991.
    35. Wu, S., Gray, D.H., and Richart, F.E., “Capillary Effects on Dynamic Modulus of Sands and Silts,” Journal of Geotechnical Engineering, Vol. 110, No. 9, pp. 1188–1203, 1984.
    36. Youn, J.U., Choo, Y.W., and Kim, D.S., “Measurement of Small-Strain Shear Modulus Gmax of Dry and Saturated Sands by Bender Element, Resonant Column, and Torsional Shear Tests,” Canadian Geotechnical Journal, Vol. 45, No. 10, pp. 1426–1438, 2008.
    37. Zehtab, K.H., Gokyer, S., Apostolov, A., Marr, W.A., and Werden, S.K., “Experimental Study of Strain Dependent Shear Modulus of Ottawa Sand,” Geotechnical Earthquake Engineering and Soil Dynamics V, Reston, VA, pp. 257–266, 2018.
    38. Zhang, J., Andrus, R.D., and Juang, C.H., “Normalized Shear Modulus and Material Damping Ratio Relationships,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 4, pp. 453–464, 2005.
    39. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,中壢,2004。
    40. 王偉芯,「台灣彰化近海土壤動態性質試驗研究」,碩士論文,國立成功大學土木工程研究所,臺南,2017。
    41. 李咸亨、李建中、沈國瑞、林少思,「臺北盆地黏性土壤之動態剪力模數和阻尼比」,中國土木水利工程學刊,第二卷,第二期,第135–147頁,1990。
    42. 李政融,「動力三軸試驗探討含細料粉質砂土之動態行為」,碩士論文,國立成功大學土木工程研究所,臺南,2010。
    43. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2010。
    44. 李豐博、李延恭、陳圭璋、謝明志、簡連貴、蘇吉立、李春榮、陳志芳、陳義松、張阿平,「土壤動態性質研究」,交通部運輸研究所港灣技術研究中心,研(五),1986。
    45. 林保延,「利用彎曲元件試驗推估砂土動態性質之探討」,碩士論文,國立臺灣科技大學營建工程研究所,臺北,2005。
    46. 林華悌,「粉質砂土阻尼比模式之探討」,碩士論文,國立成功大學土木工程研究所,臺南,2012。
    47. 施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,碩士論文,國立成功大學土木工程研究所,臺南,2009。
    48. 紀佳妤,「應用共振柱試驗探討海床土壤動態特性之研究」,未出版碩士論文,國立成功大學土木工程研究所,臺南,2020。
    49. 高茂森,「土壤動態三軸試驗條件對液化潛能分析之影響」,碩士論文,國立成功大學土木工程研究所,臺南,2004。
    50. 郭毓真,「細粒料含量對麥寮砂動態行為之影響」,碩士論文,國立交通大學土木工程研究所,新竹,2004。
    51. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2010。
    52. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,碩士論文,國立成功大學土木工程研究所,臺南,2007。
    53. 黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」,地工技術雜誌,第121期,pp. 5–16,2009。
    54. 黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程研究所,新竹,2007。
    55. 葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2011。
    56. 鄭鈺諠,「不飽和夯實土壤之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢,2010。
    57. 鍾育明,「動力三軸試驗程式之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2007。
    58. 簡才貴,「土石壩材料之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢,2006。

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE