簡易檢索 / 詳目顯示

研究生: 劉悟慢
Liu, Wu-Man
論文名稱: 運動物體表面的非牛頓流體薄膜穩定性分析
Hydrodynamic Stability Analysis of Non-Newtonian Liquid Film Flows on Moving Surface
指導教授: 陳朝光
Chen, Cha'o-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 薄膜流體穩定性非牛頓流體運動邊界Ginzburg-Landau方程式
外文關鍵詞: Film flow stability, Non-Newtonian fluid, moving boundary, Ginzburg-Landau equation
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是對於非牛頓流體的薄膜穩定性進行的一些研究。針對動態物體表面的薄膜流動進行分析,使用長波微擾法得到廣義自由面運動方程式,對於流體薄膜的線性穩定性分析,忽略其非線性項之後應用正模分析法計算其中立穩定曲線從而分析結果,對於非線性穩定性,則使用多重尺度法來探討液膜的弱非線性穩定性。通過探討Ginzburg-Landau方程式中特殊項的值來判斷流體薄膜的狀態,從而將流體的流態定性為無條件穩定、亞臨界不穩定、超臨界穩定和超臨界爆炸解的狀態。
    首先研究的對象是在直立平板沿著垂直方向運動上的冪律薄膜流。著重分析了平板的垂直運動以及流動指標對於薄膜穩定性的影響。在線性穩定性分析中,中立穩定曲線明顯受到平板垂直運動和流動指標影響,當平板向下運動越強烈,流動指標數值越大時,流體薄膜越穩定。在非線性穩定性分析中,亞臨界不穩定區域和絕對穩定區域會隨著平板向下運動增強以及流動指標增加時擴大,同時超臨界穩定區域和超臨界不穩定區域被壓縮,反之則會出現相反的結果。亞臨界不穩定區域的臨界振幅在較高的無因次波數下會隨著平板向上的移動速度增加以及流動指標變小而降低,從而顯示出穩定性變弱的結果。在超臨界穩定區域的臨界振幅在較低的無因次波數下會因為平板向下移動速度增加或者流動指標變大而增強,此時的波速也會相應的降低,從而使流體薄膜的穩定性條件變的更寬鬆。其中在平板向上運動的時候,流動指標對薄膜穩定性的影響更加顯著,而在平板向下運動的時候流動指標的變化對薄膜穩定性的影響相對不那麼顯著。
    分析在磁場影響下的導電黏彈性流體薄膜沿旋轉垂直圓柱外側流下的流體穩定性。重點分析了磁場,旋轉,黏彈性以及圓柱半徑對薄膜流體的穩定性影響。增加更強的磁場,降低旋轉和降低流體的黏彈性能提高薄膜的線性穩定性。在非線性穩定性分析中,當亞臨界不穩定區遇到增強磁場,降低旋轉和降低流體黏彈性的變化時,區域範圍會增加,相應的超臨界不穩定區域會減少。亞臨界穩定區和超臨界穩定區會受到磁場,旋轉和黏彈性的變化而產生變化,總體區域面積變化不大,但是相對於雷諾數和無因次波數的範圍有整體移動。在有條件穩定區域內,增強磁場,降低旋轉以及黏彈性會讓穩定性條件變得更加寬鬆。以上這些結論都需要在無因次半徑在相對較小時成立。圓柱的半徑較小時,薄膜系統的穩定性主要受到磁場,旋轉和黏彈性影響較大,當無因次半徑變得更大之後,會更強烈的影響薄膜系統,使之變得不穩定,其影響將主導薄膜穩定性,同時其他參數的影響相對而言明顯減弱。

    This thesis analyses the stability of non-Newtonian film flow on moving surfaces.
    The generalized kinematic equation of free film interface is obtained by using the long wave perturbation method. Linear perturbation equation is solved by normal mode approach method for the linear stability. The multiple scales method is used to solve the nonlinear perturbation equation. The nonlinear stability is discussed by the Ginzburg-Landau equation. There are four types of the states of the nonlinear stability such as subcritical instability, subcritical stability (absolute stability), supercritical stability and supercritical instability (supercritical explosive state).
    The first model is a thin power law fluid flowing down a moving plane in a vertical direction. The result of linear and nonlinear stability shows the downward speed increases and the power law index increases enhance the stability of film flow.
    The second model is a thin electrically-conductive viscoelastic fluid film flow along the side of a rotating vertical cylinder with the effect of magnetic field. The general result of linear and nonlinear stability shows the increasing of magnetic and radius of the cylinder enhance the stability of film flow, the increasing of rotational velocity and effect of viscoelastic reduce the stability of film flow. Meanwhile, increasing radius under large Rossby number can lead to losing stability easier, such as the dimensionless radius is more than 50. It is worth noting that this phenomenon is leaded by the radius, and the influence is stronger than other parameters.

    摘 要 I 英文摘要 III 誌 謝 VII 圖 目 錄 XII 表 目 錄 XV 符 號 XVI 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 5 1-3 選擇研究方法 7 1-4 論文架構 9 第二章 文獻回顧 10 2-1 非牛頓流體 10 2-2 流體薄膜的穩定性理論 11 2-3 結合非牛頓流體的薄膜穩定性研究 12 第三章 薄膜穩定性研究方法 14 3-1廣義自由面方程式 14 3-2線性薄膜穩定性分析 15 3-3非線性薄膜穩定性分析 15 第四章 冪律薄膜流體在垂直運動平板上流動的穩定性分析 22 4-1 建立理論模型 22 4-2 求出長波微擾解 27 4-3 分析線性穩定性與非線性穩定性 29 第五章 導電黏彈性流體薄膜在受到磁場影響下流經旋轉圓柱側邊的穩定性分析 43 5-1 建立理論模型 43 5-2 求出長波微擾解 50 5-3 分析線性穩定性與非線性穩定性 51 第六章 結論與建議 66 6-1 垂直運動平板上的冪律流體薄膜穩定性結論 66 6-2 在磁場影響下導電黏彈性流體薄膜經過一個旋轉圓柱側流下的薄膜穩定性結論 67 6-3 建議與展望 68 參考文獻 70 附錄A 74 附錄B 80 附錄C 82 附錄D 83 附錄E 85

    Arefmanesh, A., Madandar Arani, M., and Abbasian Arani, A.A., "Dynamics of a bubble in a power-law fluid confined within an elastic solid"; European Journal of Mechanics - B/Fluids 94, 29-36, (2022).
    Beard, D.W., and Walters, K., "Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point"; Mathematical Proceedings of the Cambridge Philosophical Society 60, 667-674, (1964).
    Benney, D.J., "Long Waves on Liquid Films"; Journal of Mathematics and Physics 45, 150-&, (1966).
    Bilal, M., Saeed, A., Gul, T., Rehman, M., and Khan, A., "Thin-film flow of Carreau fluid over a stretching surface including the couple stress and uniform magnetic field"; Partial Differential Equations in Applied Mathematics 4, 100162, (2021).
    Chandrasekhar, S., "Hydrodynamic and hydromagnetic stability"; Oxford University Press, (1961).
    Chang, C.L., "Nonlinear stability analysis of thin micropolar film flows travelling down a vertical moving plate"; Journal of Physics D: Applied Physics 39, 984-992, (2006).
    Chang, S., and Duan, R., "The limits of coefficients of angular viscosity and microrotation viscosity to one-dimensional compressible Navier-Stokes equations for micropolar fluids model"; Journal of Mathematical Analysis and Applications 516, 126462, (2022).
    Chen, C.K., Cheng, P.J., and Lai, H.Y., "Stability analysis of thin viscoelastic liquid film flowing down on a vertical wall"; Journal of Physics D: Applied Physics 33, 1674-1682, (2000).
    Chen, C.K., Cheng, P.J., and Lai, H.Y., "Nonlinear stability analysis of the thin pseudoplastic liquid film flowing down along a vertical wall"; Journal of Applied Physics 89, (2001).
    Chen, C.I., Chen, C.K., and Yang, Y.T., "Weakly nonlinear stability analysis of thin viscoelastic film flowing down on the outer surface of a rotating vertical cylinder"; International Journal of Engineering Science 41, 1313-1336, (2003).
    Chen, C.I., Chen, C.K., and Yang, Y.T., "Perturbation analysis to the nonlinear stability characterization of thin condensate falling film on the outer surface of a rotating vertical cylinder"; International Journal of Heat and Mass Transfer 47, 1937-1951, (2004).
    Chen, C.I., Chen, C.K., and Yang, Y.T., "Nonlinear stability analysis of thin Newtonian film flowing down on the inner surface of a rotating vertical cylinder"; Acta Mechanica 179, 227-248, (2005).
    Chen, C.K., and Lin, M.C., "Weakly Nonlinear Stability Analysis of a Thin Liquid Film With Condensation Effects During Spin Coating"; Journal of Fluids Engineering 131, (2009a).
    Chen, C.K., and Lin, M.C., "Weakly Nonlinear Hydrodynamic Stability of the Thin Newtonian Fluid Flowing on a Rotating Circular Disk"; Mathematical Problems in Engineering 2009, 1-15, (2009b).
    Cheng, P.J., "Hydromagnetic stability of a thin electrically conducting fluid film flowing down the outside surface of a long vertically aligned column"; Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, 415-426, (2009).
    Cheng, P.J., and Lin, M.C., "Hydromagnetic Instability of a Thin Condensate (Evaporating) Fluid Film Under Rotating Centrifugal Force"; Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao 37, 577-586, (2016).
    Drazin, P.G., and Reid, W.H., "Hydrodynamic Stability"; Cambridge University Press, (1984).
    Fusi, L., "A finite difference scheme for the unsteady planar motion of a Bingham fluid"; Journal of Non-Newtonian Fluid Mechanics 299, 104702, (2022).
    Ginzburg, V.L., and Landau, L.D., "Theory of superconductivity"; J. Exp. Theor. Phys., (1950).
    Gjevik, B., "Occurrence of Finite‐Amplitude Surface Waves on Falling Liquid Films"; The Physics of Fluids 13, 1918-1925, (1970).
    Gupta, A.S., "Stability of a visco-elastic liquid film flowing down an inclined plane"; Journal of Fluid Mechanics 28, 17-28, (1967).
    Gupta, A.S., and Rai, L., "Note on the stability of a visco-elastic liquid film flowing down an inclined plane"; Journal of Fluid Mechanics 33, 87-91, (1968).
    Jafarigol, E., Salehi, M.B., and Mortaheb, H.R., "Preparation and assessment of electro-conductive poly(acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity"; Chemical Engineering Research and Design 162, 74-84, (2020).
    Kapitza, P.L., "Wave flow of thin viscous liquid films"; Zh. Expeer. Teor. Fiz 18, 3-28, (1949).
    Krishna, M.V.G., and Lin, S.P., "Nonlinear stability of a viscous film with respect to three‐dimensional side‐band disturbances"; Physics of Fluids 20, 1039-1044, (1977).
    Lai, H.Y., Sung, H.M., and Chen, C.K., "Nonlinear stability characterization of thin Newtonian film flows traveling down on a vertical moving plate"; Communications in Nonlinear Science and Numerical Simulation 10, 665-680, (2005).
    Lee, J., "Kapitza's method of film flow description"; Chemical Engineering Science 24, 1309-1319, (1969).
    Lin, C.C., "The theory of hydrodynamic stability"; Cambridge University Press, (1955).
    Lin, M.C., "Stability Analysis of a Thin Pseudoplastic Fluid with Condensation Effects Flowing on a Rotating Circular Disk"; Advanced Materials Research 699, 413-421, (2013).
    Lin, M.C., and Cheng, P.J., "Hydromagnetic Stability of a General Viscous Fluid Film With Weakly Nonlinear Effects on a Rotating"; journal of the Chinese Society of Mechanical Engineers 42, 33-41, (2021).
    Lin, S.P., "Finite-amplitude stability of a parallel flow with a free surface"; Journal of Fluid Mechanics 36, 113-126, (1969).
    Lin, S.P., "Finite amplitude side-band stability of a viscous film"; Journal of Fluid Mechanics 63, (1974).
    Massot, C., Irani, F., and Lightfoot, E.N., "Modified description of wave motion in a falling film"; AIChE Journal 12, 445-455, (1966).
    Nayfeh, A.H., "The Method of Multiple Scales"; In Perturbation Methods, pp. 228-307 (1973).
    Orr, W.M.F., "The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I: A Perfect Liquid"; Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 27, 9-68, (1907).
    Sommerfeld, A., "Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen"; (1909).
    Stuart, J.T., "ON THE ROLE REYNOLDS STRESSES IN STABILITY THEORY"; Journal of the Aeronautical Sciences (1956).
    Sung, H.M., Lee, Z.Y., and Hsu, C.T., "Nonlinear stability characterization of thin Newtonian liquid films flowing down a cylinder moving in a vertical direction"; Hsiuping Journal 24, 69-84, (2012).
    Tomita, U., "Rheology"; Corona, (1964).
    Tsai, J.S., Hung, C.I., and Chen, C.K., "Nonlinear hydromagnetic stability analysis of condensation film flow down a vertical plate"; Acta Mechanica 118, 197-212, (1996).
    Zhang, X.H., Shah, R., Saleem, S., Shah, N.A., Khan, Z.A., and Chung, J.D., "Natural convection flow maxwell fluids with generalized thermal transport and newtonian heating"; Case Studies in Thermal Engineering 27, 101226, (2021).
    Zhao, D., Zhou, H., Wang, Y., Yin, J., and Huang, Y., "Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink"; Additive Manufacturing 48, 102451, (2021).
    宋鴻明, "非牛頓流體薄膜流的非線性液動穩定性分析"; 機械工程研究所博士論文 國立成功大學 (2004).
    林銘哲, "流體在旋轉圓盤表面上薄膜流動之弱非線性液動穩定性"; 機械工程研究所博士論文 國立成功大學 (2009).
    陳俊益, "流體薄膜沿等速旋轉圓柱內外表面流下之非線性穩定性分析"; 機械工程研究所博士論文 國立成功大學 (2003).
    鄭博仁, "重力作用下之非牛頓流體薄膜流的非線性液動穩定性分析"; 機械工程研究所博士論文 國立成功大學 (2001).

    下載圖示 校內:2024-09-05公開
    校外:2024-09-05公開
    QR CODE