| 研究生: |
吳詩雯 Wu, Shih-Wen |
|---|---|
| 論文名稱: |
考量 Wiener 過程建構三應力加速水準之加速退化試驗抽樣計畫 Design of accelerated degradation test acceptance sampling plan with three stress levels based on Wiener process |
| 指導教授: |
胡政宏
Hu, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 加速退化試驗 、抽樣計畫 、4:2:1比例方法 、Wiener退化過程 |
| 外文關鍵詞: | accelerated degradation test, Wiener process, acceptance sampling plan, 4:2:1 method |
| 相關次數: | 點閱:200 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在下游廠商決定上游合作廠商時,廠商出貨產品的品質為重要的決定因素,其中抽樣驗收計畫常常做為確保產品品質的手段,當抽樣品質符合預先設定的品質標準時允收該貨批,否則將拒收。在設定產品品質標準時,產品壽命常常會被視為判斷產品品質的要素,為了估計產品壽命以確定產品品質,過往常常會使用壽命試驗來獲得產品的壽命資料。然而在科技不斷進步的同時,產品壽命也越來越長,因此使用壽命試驗會使廠商花費過多的時間來等待產品的失效發生,或甚至在試驗結束時仍未記錄到產品失效。即使運用加速壽命試驗方法能加速產品失效的發生,但在測試過程中收集到的壽命相關資訊仍然相當有限,於是利用退化資料來評估產品品質的退化試驗便因應而生。退化試驗運用在產品的品質特徵會隨使用時間產生退化的產品上,並且藉由紀錄品質特徵值的衰退來推估產品品質。
為了更有效率的獲取退化資料,加速技術也被運用在退化試驗上,雖然使用二種應力水準能夠使設計出來的實驗最有效率,但二應力實驗卻無法驗證設定的模型與實際情況是否相符。在實驗模型設定錯誤的情況下,三應力實驗也會比二應力實驗更具穩健性,於是本研究希望以三應力設計加速實驗提供使用者多一層保障。
於是本研究將引用4:2:1理論作為分配不同應力下樣本比例的分配標準,並在考量實驗成本與抽樣風險下,建構一個產品退化服從Wiener過程(維納過程)的三應力水準加速退化試驗抽樣計畫。並以Liao & Tseng (2006)所提供之案例作示範,求得不同參數下之最佳抽樣計劃的設計。
When manufacturers decide on upstream partners, the quality of the supplied products is a crucial determining factor. A sampling acceptance plan is commonly used as a means to ensure product quality. Under this plan, if the sampled quality meets the predefined standards, the batch is accepted; otherwise, it is rejected. Product lifespan is often considered a key element in determining product quality. Traditionally, life tests have been conducted to estimate product lifespan and ensure product quality. However, as technology advances, product lifespans have been increasing, leading to extended waiting times for product failures during life testing or even a lack of failure data by the end of the testing period. To address this, degradation testing using degradation data has emerged as an alternative for evaluating product quality.
This study aims to provide users with an additional layer of robustness by employing a three-level stress design for accelerated degradation testing. The study adopts the 4:2:1 theory as a standard for allocating different sample proportions under various stress levels. Considering the experimental cost and sampling risk, a three-stress levels accelerated degradation test acceptance sampling plan based on Wiener process is developed. Optimal sampling plans under different parameters are designed using a case provided by Liao & Tseng (2006) as a demonstration.
[1] Aslam, M., & Jun, C.-H. (2009). A group acceptance sampling plan for truncated life test having Weibull distribution. Journal of Applied Statistics, 36(9), 1021-1027. doi:10.1080/02664760802566788
[2] Balakrishnan, & Ling, M. H. (2014). Best Constant-Stress Accelerated Life-Test Plans With Multiple Stress Factors for One-Shot Device Testing Under a Weibull Distribution. IEEE Transactions on Reliability, 63(4), 944-952. doi:10.1109/tr.2014.2336391
[3] Balakrishnan, N., Leiva, V., & López, J. (2007). Acceptance Sampling Plans from Truncated Life Tests Based on the Generalized Birnbaum–Saunders Distribution. Communications in Statistics - Simulation and Computation, 36(3), 643-656. doi:10.1080/03610910701207819
[4] Balamurali, S., & Jun, C.-H. (2007). Multiple dependent state sampling plans for lot acceptance based on measurement data. European Journal of Operational Research, 180(3), 1221-1230. doi:10.1016/j.ejor.2006.05.025
[5] Balasooriya, U., & Balakrishnan, N. (2000). Reliability sampling plans for lognormal distribution based on progressively censored samples. IEEE Transactions on Reliability, 49(2), 199-203. doi:10.1109/24.877338
[6] Chen, Z., Li, S., & Pan, E. (2016). Optimal Constant-Stress Accelerated Degradation Test Plans Using Nonlinear Generalized Wiener Process. Mathematical Problems in Engineering, 2016, 1-11. doi:10.1155/2016/9283295
[7] Ding, C., Yang, C., & Tse, S.-K. (2010). Accelerated life test sampling plans for the Weibull distribution under Type I progressive interval censoring with random removals. Journal of Statistical Computation and Simulation, 80(8), 903-914. doi:10.1080/00949650902834478
[8] Elsayed, E. A. (2012). Overview of Reliability Testing. IEEE Transactions on Reliability, 61(2), 282-291. doi:10.1109/tr.2012.2194190
[9] Huang, S.-R., & Wu, S.-J. (2008). Reliability Sampling Plans Under Progressive Type-I Interval Censoring Using Cost Functions. IEEE Transactions on Reliability, 57(3), 445-451. doi:10.1109/tr.2008.928239
[10] Liao, C. M., & Tseng, S. T. (2006). Optimal Design for Step-Stress Accelerated Degradation Tests. IEEE Transactions on Reliability, 55(1), 59-66. doi:10.1109/tr.2005.863811
[11] Lone, S. A., & Ahmed, A. (2020). Design and Analysis of Accelerated Life Testing and its Application Under Rebate Warranty. Sankhya A, 83(1), 393-407. doi:10.1007/s13171-019-00193-0
[12] Lu, C. J., & Meeker, W. Q. (1993). Using degradation measures to estimate a time to failure distribution. Technometrics, 35(2), 161-174. doi:10.1080/00401706.1993.10485038
[13] Meeker, W. Q. (1984). A Comparison of Accelerated Life Test Plans for Weibull and Lognormal Distributions and Type I Censoring. Technometrics, 26(2), 157-171. doi:10.1080/00401706.1984.10487941
[14] Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. New York: Jhon Wiley & Sons.
[15] Meeker, W. Q., & Hahn, G. J. (1985). How to Plan an Accelerated Life Test: Some Practical Guidelines. The ASQC Basic References in Quality Control, Vol. 10.
[16] Nelson, W. B. (2009). Accelerated Testing_ Statistical Models, Test Plans, and Data Analysis (Wiley Series in Probability and Statistics).
[17] Pan, Z., Balakrishnan*, N., & Sun, Q. (2011). Bivariate Constant-Stress Accelerated Degradation Model and Inference. Communications in Statistics - Simulation and Computation, 40(2), 247-257. doi:10.1080/03610918.2010.534227
[18] Pascual, F. G. (2006). Accelerated Life Test Plans Robust to Misspecification of the Stress—Life Relationship. Technometrics, 48(1), 11-25. doi:10.1198/004017005000000436
[19] Pascual, F. G., & Montepiedra, G. (2003). Model-Robust Test Plans With Applications in Accelerated Life Testing. Technometrics, 45(1), 47-57. doi:10.1198/004017002188618699
[20] Seo, J. H., Jung, M., & Kim, C. M. (2009). Design of accelerated life test sampling plans with a nonconstant shape parameter. European Journal of Operational Research, 197(2), 659-666. doi:10.1016/j.ejor.2008.07.009
[21] Tang, L. C., Yang, G. Y., & Xie, M. (2004). Planning of step-stress accelerated degradation test. Proceedings of the Annual Reliability and Maintainability Symposium, 287-292. doi:10.1109/RAMS.2004.1285462
[22] Ye, Z.-S., & Xie, M. (2015). Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry, 31(1), 16-32. doi:10.1002/asmb.2063
[23] Yu, H.-F., & Tseng, S.-T. (1999). Designing a degradation experiment. Naval Research Logistics, 46(6), 689-706. doi:10.1002/(sici)1520-6750(199909)46:6<689::Aid-nav6>3.0.Co;2-n
[24] Zeng, B.-H. (2021). Design of accelerated life test sampling plans with three stress levels under Type I censoring (Master's thesis). NCKU.
[25] Zhang, Z., Si, X., Hu, C., & Lei, Y. (2018). Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. European Journal of Operational Research, 271(3), 775-796. doi:10.1016/j.ejor.2018.02.033
[26] Zhao, X., Chen, P., Gaudoin, O., & Doyen, L. (2021). Accelerated degradation tests with inspection effects. European Journal of Operational Research, 292(3), 1099-1114. doi:10.1016/j.ejor.2020.11.041
[27] Zhao, X., Xu, J., & Liu, B. (2018). Accelerated Degradation Tests Planning With Competing Failure Modes. IEEE Transactions on Reliability, 67(1), 142-155. doi:10.1109/tr.2017.2761025