簡易檢索 / 詳目顯示

研究生: 林子堯
Lin, Zih-Yao
論文名稱: 基於金奈米粒子與幾丁聚醣微針之複合式經皮疫苗平台:整合奈米載體與微針雙佐劑之免疫增強策略
Hybrid Intradermal Vaccination Platform Based on Gold Nanoparticles and Chitosan Microneedles: An Immune Enhancement Strategy Integrating Dual Adjuvanticity from Nanocarriers and Microneedles
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 190
中文關鍵詞: 金奈米粒子幾丁聚醣卵清蛋白微針抗原呈現細胞疫苗接種免疫佐劑經皮傳輸
外文關鍵詞: Gold nanoparticles, Chitosan, Ovalbumin, Microneedle, Antigen-presenting cells, Vaccination, Adjuvant, Transdermal delivery
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 次單位疫苗因其良好的生物安全性以及較低的大規模生產成本一直是疫苗應用開發的熱門候選,而微針做為一種藥物傳輸裝置其經皮給藥的特性使其能與疫苗接種途徑中理論效果最好的皮內給藥完美契合,本研究在此之上加入了金奈米疫苗作為中介點,結合其奈米載體以及免疫佐劑的特性進一步最佳化疫苗的傳遞。本研究分為兩大部分:第一部分著重金奈米—卵清蛋白奈米載體疫苗之開發、基礎性質鑑定以及免疫功能之評估,第二部分則整合金奈米載體疫苗與幾丁聚醣(具免疫佐劑特性的天然高分子)微針實際驗證該雙佐劑免疫增強策略。
    第一部份:次單位疫苗常受限於較弱的免疫原性以及在製劑加工過程(如乾燥、濃縮)中的不穩定性。本研究使用金奈米粒子(GNP)開發一種兼具結構穩定性與自佐劑特性(Self-adjuvanticity)的奈米載體平台,以作為後續微針遞送系統的核心元件。利用檸檬酸還原法合成,並透過硫醇-聚乙二醇-羧酸(HS-PEG-COOH)進行表面修飾,隨後,利用化學接枝方式將模型抗原卵清蛋白(Ovalbumin, OVA)共價接枝於GNP表面,形成GNP-OVA奈米載體疫苗。經過表面修飾與抗原接枝後,奈米粒子的水合粒徑由的13.8 nm增加至約28.6 nm,且表面電位由強負電轉趨中性,證實了表面修飾的成功。實驗證實 PEG層所提供的立體障礙賦予了該奈米載體疫苗極佳的膠體穩定性,使其在未添加額外冷凍保護劑的情況下,仍能抵抗凍乾製程中的脫水應力與離子強度變化等物理影響,回溶後不發生聚集,此特性確立了其適用於微針製程的可行性。細胞實驗結果顯示GNP-OVA具有良好的生物相容性,且相較於物理混合劑型,化學接枝策略能顯著提升抗原呈現細胞的攝取效率(6.4倍的平均螢光強度),並有效促進免疫呈現分子MHC-II的上調。活體動物實驗進一步證實,於小鼠皮下注射GNP-OVA能誘導出顯著優於純抗原及物理混合組的抗原特異性IgG效價,且具備良好的免疫記憶效應。
    第二部份:本章節整合奈米載體疫苗的免疫增強功能與微針的經皮傳輸特性進行雙重佐劑免疫增強策略的實際開發,將GNP-OVA奈米疫苗負載於具備免疫刺激特性的幾丁聚醣微針中,透過材料功能的互補,達成從細胞層級的精準遞送到組織層級的免疫環境重塑。研究首先探討奈米載體的抗原接枝比例(O/G ratio)對細胞之影響,發現O/G=1的配方能最大程度地促進樹突細胞(DC2.4)表面共刺激分子CD86與MHC-II的表現。活體影像系統(IVIS)追蹤顯示,GNP-OVA 能有效促進抗原向淋巴結的引流與累積。本研究利用壓模成型法製備出具有聚乳酸(PLA)支撐基座的GNP-OVA/幾丁聚醣複合微針,機械強度測試顯示其單根微針之耐受力達1.1 N,且在活體大鼠皮膚上的平均穿刺深度為897.9 ± 96.6 μm (n = 5),確保疫苗能精確遞送至真皮層。活體釋放追蹤顯示,幾丁聚醣微針能作為抗原儲存庫在皮膚內提供長達 28 天以上持續性的抗原釋放。組織切片染色進一步揭示,微針的植入能主動招募CD86+免疫細胞聚集於注射部位,形成有利於抗原捕獲的發炎微環境。動物免疫實驗證實,此雙重佐劑微針平台所誘導的IgG 抗體效價顯著優於傳統皮下注射,並能同時促進Th1與Th2的免疫應答。
    本研究成功建構了一套整合「微觀奈米載體」與「巨觀微針基質」的複合式經皮疫苗平台,透過幾丁聚醣微針的抗原儲庫、內源性免疫刺激等特性與金奈米載體的尺寸效應、仿病毒結構的結合,本研究確立了雙重佐劑機制自巨觀至微觀的結合,不僅實現了抗原的穩定封裝與長效緩釋,更證實能有效調控免疫細胞活化,誘導出強效的免疫應答。此模組化載體平台具備高度的可擴展性,除了現有的模型抗原外,未來可進一步應用於癌症免疫治療或流感等需誘導強烈免疫反應之疫苗開發。

    Subunit vaccines have emerged as promising candidates for vaccine development due to their superior biosafety and cost-effective scalability. Meanwhile, microneedles serve as an ideal drug delivery system, enabling transdermal administration that aligns perfectly with intradermal vaccination, which is theoretically the most efficient inoculation route. Based on this foundation, this study incorporates gold nanovaccines as a pivotal intermediary, leveraging their properties as both nanocarriers and immune adjuvants to further optimize vaccine delivery. The research is divided into two main parts: Part I focuses on the development, physicochemical characterization, and immunological function evaluation of gold nanoparticle-ovalbumin nanovaccines; Part II integrates these nanocarriers with chitosan microneedles (a natural polymer with immunostimulatory properties) to practically validate this dual-adjuvant immune enhancement strategy.
    Part I: Subunit vaccines are often limited by their weak immunogenicity and instability during processing steps such as drying and concentration. In this study, gold nanoparticles (GNPs) were utilized to develop a nanocarrier platform featuring both structural stability and self-adjuvanticity, serving as the core component for the subsequent microneedle system. The GNPs were synthesized via citrate reduction, surface-modified with Thiol-PEG-Carboxyl (HS-PEG-COOH), and covalently conjugated with the model antigen ovalbumin (OVA) to form the GNP-OVA nanovaccine. Following modification and grafting, the hydrodynamic diameter increased from 13.8 nm to approximately 28.6 nm, while the surface potential shifted from strongly negative to near-neutral, confirming successful functionalization. Experiments demonstrated that the steric stabilization provided by the PEG layer endowed the nanovaccine with exceptional colloidal stability. This allowed it to withstand physical stresses—such as dehydration and ionic strength fluctuations—during freeze-drying without the need for additional cryoprotectants, ensuring no aggregation occurred upon reconstitution. This characteristic established its suitability for microneedle fabrication. Cellular assays indicated that GNP-OVA exhibited high biocompatibility; moreover, the chemical grafting strategy significantly enhanced uptake efficiency by antigen-presenting cells (6.4-fold higher mean fluorescence intensity compared to physical mixtures) and effectively promoted the upregulation of MHC-II molecules. In vivo animal studies further confirmed that subcutaneous injection of GNP-OVA in mice induced antigen-specific IgG titers significantly superior to those of pure antigen or physical mixtures, while establishing a robust immune memory effect.
    Part II: This section focuses on the practical application of a dual-adjuvant immune enhancement strategy by integrating the immunogenic nanocarriers with the transdermal capabilities of microneedles. The GNP-OVA nanovaccine was loaded into chitosan microneedles, which possess intrinsic immunostimulatory properties. This combination leverages material complementarity to achieve precise delivery at the cellular level and immune environment remodeling at the tissue level. Investigation of the antigen grafting ratio (O/G ratio) revealed that an O/G ratio of 1 maximally promoted the expression of co-stimulatory molecules CD86 and MHC-II on dendritic cells (DC2.4). In vivo imaging system (IVIS) tracking showed that GNP-OVA effectively facilitated antigen drainage and accumulation in lymph nodes. Using a compression molding method, GNP-OVA/chitosan composite microneedles were prepared on a polylactic acid (PLA) supporting base. Mechanical testing indicated a withstand force of 1.1 N per needle, with an average in vivo penetration depth of 897.9 ± 96.6 μm (n = 5) in rat skin, ensuring precise dermal delivery. Release profiles demonstrated that the chitosan microneedles acted as an antigen depot, providing sustained release within the skin for over 28 days. Histological analysis further revealed that microneedle implantation actively recruited CD86+ immune cells to the injection site, creating an inflammatory microenvironment conducive to antigen capture. Immunization studies confirmed that this dual-adjuvant platform induced IgG antibody titers significantly higher than traditional subcutaneous injection and simultaneously promoted Th1 and Th2 immune response.
    In conclusion, this study successfully constructs a composite transdermal vaccine platform that integrates nanocarriers with a microneedle matrix to achieve macroscopic-microscopic adjuvanticity transition. By synergizing the antigen depot and endogenous immunostimulatory properties of chitosan microneedles with the size effects and virus-mimetic structure of gold nanocarriers, this research establishes a seamless dual-adjuvant mechanism spanning macroscopic to microscopic scales. This approach not only accomplishes stable antigen encapsulation and long-term sustained release but also effectively regulates immune cell activation to induce potent immune responses. The modular nature of this platform offers high scalability; beyond the current model antigen, it holds significant potential for future applications in cancer immunotherapy or the development of vaccines requiring robust immune induction, such as those for influenza.

    摘要 I 英文延伸摘要 III Abstract XVI 誌謝 XIX 目錄 XX 表目錄 XXV 圖目錄 XXVI 第一章 緒論 1 1.1 傳染病與疫苗 1 1.1.1 疫苗發展與種類 1 1.1.1.1 減毒與去活化疫苗 2 1.1.1.2 次單位疫苗 3 1.1.1.3 核酸疫苗 4 1.1.1.4 新興疫苗類別 4 1.1.2 疫苗接種途徑 5 1.1.3 先天免疫與抗原呈現細胞 7 1.1.4 適應性免疫與輔助型T細胞 10 1.1.4.1 第一型輔助T細胞 (Th1) 與細胞免疫 (Cellular Immunity) 10 1.1.4.2 第二型輔助T細胞 (Th2) 與體液免疫 (Humoral Immunity) 10 1.1.4.3 其他類型輔助T細胞 11 1.1.5 疫苗佐劑 11 1.2 奈米載體與疫苗設計 14 1.2.1 應用於疫苗遞送之奈米載體類別 16 1.2.1.1 脂質基底奈米載體 16 1.2.1.2 高分子奈米載體 17 1.2.1.3 無機奈米載體 17 1.2.1.4 類病毒顆粒與細胞外泌體 18 1.2.2 奈米載體之物化性質與細胞攝取動力學 19 1.2.2.1 尺寸與幾何效應 19 1.2.2.2 表面性質 20 1.3 微針系統 22 1.3.1 微針類別 22 1.3.2 微針與藥物控制釋放 24 1.3.3 微針介導之疫苗傳遞 25 1.3.4 奈米載體於微針系統之應用 28 1.4 奈米載體疫苗之生物分布與傳輸動力學 30 1.4.1 抗原呈現之體內動線 30 1.4.2 影響疫苗傳輸之動力學因素 31 1.4.2.1 粒徑尺寸 31 1.4.2.2 表面電荷 32 1.4.2.3 親疏水性 33 1.4.2.4 幾何形狀 33 1.4.3 體內廓清機制對疫苗效果之影響 34 1.5 研究材料與架構 35 1.5.1 金奈米粒子 35 1.5.1.1 金奈米粒子之內源性免疫刺激能力 36 1.5.1.2 金奈米粒子之尺寸效應與淋巴運輸 36 1.5.1.3 仿病毒設計與多價呈現 37 1.5.1.4 金奈米粒子之毒理性質 38 1.5.2 幾丁聚醣 38 1.5.3 卵清蛋白 41 1.5.4 研究架構 41 第二章 金奈米—卵清蛋白奈米載體疫苗之膠體穩定、自佐劑特性與免疫效能評估 43 2.1 研究動機與目的 43 2.2 實驗架構 45 2.3 實驗藥品與儀器設備 46 2.3.1 實驗藥品與耗材 46 2.3.2 實驗細胞與動物 49 2.3.3 儀器設備 49 2.4 實驗方法 51 2.4.1 披覆檸檬酸根之金奈米粒子(GNP)合成 51 2.4.2 羧基-聚乙二醇化金奈米粒子 (GNP-PEG) 之合成 51 2.4.3 金奈米粒子-卵清蛋白奈米載體疫苗(GNP-OVA)製備 52 2.4.4 奈米載體疫苗接枝定量分析 53 2.4.5 穿透式顯微影像與奈米載體疫苗形態學分析 54 2.4.6 動態光散射與奈米載體疫苗粒徑、界達電位量測 54 2.4.7 紫外-可見(UV-Vis)光譜與奈米載體疫苗膠體穩定度分析 55 2.4.8 奈米載體疫苗之細胞毒性檢測 56 2.4.9 奈米載體疫苗對抗原呈現細胞胞吞效率之影響 58 2.4.10 抗原呈現細胞免疫功能活化指標 60 2.4.11 小鼠免疫應答與活體安全性監測 61 2.5 結果與討論 63 2.5.1 GNP、GNP-PEG與GNP-OVA之合成與製程再現性 63 2.5.2 各階段金奈米粒子之形態學觀測與接枝定量 64 2.5.3 各階段金奈米粒子之粒徑分布與表面電位分析 66 2.5.4 金奈米粒子之表面電漿共振現象與膠體穩定性監測 67 2.5.5 奈米載體疫苗之細胞毒性檢測(巨噬細胞) 72 2.5.6 奈米載體疫苗對抗原呈現細胞胞吞效率之影響 74 2.5.7 奈米載體疫苗與抗原呈現細胞之免疫功能活化指標 77 2.5.8 小鼠OVA特異性免疫應答與活體安全性 80 2.6 階段性結論 83 第三章 整合金奈米載體/幾丁聚醣微針之雙佐劑免疫增強策略 85 3.1 研究動機與目的 85 3.2 實驗架構 87 3.3 實驗藥品與儀器設備 88 3.3.1 實驗藥品與耗材 88 3.3.2 實驗細胞與動物 92 3.3.3 儀器設備 92 3.4 實驗方法 94 3.4.1 金奈米粒子載體疫苗之抗原接枝比例調控與鑑定 94 3.4.2 細胞毒性、免疫活化指標與共遞送分析(樹突細胞) 96 3.4.3 奈米載體疫苗的活體影像系統(IVIS)淋巴結引流追蹤 97 3.4.4 含金奈米載體疫苗之幾丁聚醣微針製備 99 3.4.5 微針載藥量定量分析 103 3.4.6 微針機械強度與穿刺能力分析 103 3.4.7 使用Franz Diffusion Cell之微針體外擴散釋放監測 105 3.4.8 活體影像系統與大鼠體內微針降解追蹤 106 3.4.9 皮膚組織切片染色與微針穿刺造成免疫細胞聚集之觀測 106 3.4.10 大鼠免疫應答與活體安全性監測 108 3.5 結果與討論 110 3.5.1 奈米載體疫苗之抗原比例調整與鑑定 110 3.5.2 奈米載體疫苗於樹突細胞之細胞毒性與免疫活化分析 112 3.5.3 奈米載體疫苗之共遞送行為觀測與相關係數定量 115 3.5.4 奈米載體疫苗之淋巴引流動力學與活體影像追蹤 118 3.5.5 含金奈米載體疫苗之幾丁聚醣微針之製備與載藥量分析 120 3.5.6 微針陣列之機械強度測試與體內、體外穿刺能力分析 123 3.5.7 微針於體外擴散實驗與活體降解追蹤之釋放動力學研究 124 3.5.8 皮膚組織切片染色與微針誘導之局部免疫細胞聚集 127 3.5.9 大鼠OVA特異性免疫應答試驗與活體安全性監測 133 3.6 階段性結論 138 第四章 研究總結 140 著作目錄 142 參考文獻 143

    [1] Chavda VP, Ghali ENHK, Balar PC, Chauhan SC, Tiwari N, Shukla S, Athalye M, Patravale V, Apostolopoulos V, Yallapu MM. Protein subunit vaccines: Promising frontiers against COVID-19. Journal of Controlled Release 2024;366:761–82.
    [2] Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS Nano 2023;17(24):24514–38.
    [3] Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharmaceutica Sinica B 2023;13(8):3321–38.
    [4] Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, Gong T, Zhang L, Sun X. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Science Advances 2020;6(25):eaaz4462.
    [5] Liang J, Yao L, Liu Z, Chen Y, Lin Y, Tian T. Nanoparticles in Subunit Vaccines: Immunological Foundations, Categories, and Applications. Small 2025;21(1):2407649.
    [6] Kim SY, Noh YW, Kang TH, Kim JE, Kim S, Um SH, Oh D-B, Park Y-M, Lim YT. Synthetic vaccine nanoparticles target to lymph node triggering enhanced innate and adaptive antitumor immunity. Biomaterials 2017;130:56–66.
    [7] Liu HY, Li X, Wang ZG, Liu SL. Virus-mimicking nanosystems: from design to biomedical applications. Chemical Society Reviews 2023;52(24):8481–99.
    [8] Butkovich N, Li E, Ramirez A, Burkhardt AM, Wang S. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. WIREs Nanomedicine and Nanobiotechnology 2021;13(3):e1681.
    [9] Heidary M, Kaviar VH, Shirani M, Ghanavati R, Motahar M, Sholeh M, Ghahramanpour H, Khoshnood S. A Comprehensive Review of the Protein Subunit Vaccines Against COVID-19. Frontiers in Microbiology 2022;13:927306.
    [10] Farfán-Castro S, García-Soto MJ, Comas-García M, Arévalo-Villalobos JI, Palestino G, González-Ortega O, Rosales-Mendoza S. Synthesis and immunogenicity assessment of a gold nanoparticle conjugate for the delivery of a peptide from SARS-CoV-2. Nanomedicine: Nanotechnology, Biology and Medicine 2021;34:102372.
    [11] He P, Tang H, Zheng Y, Xiong Y, Cheng H, Li J, Zhang Y, Liu G. Advances in nanomedicines for lymphatic imaging and therapy. Journal of Nanobiotechnology 2023;21(1):292.
    [12] Wang G, Verma AK, Shi J, Guan X, Meyerholz DK, Bu F, Wen W, Liu B, Li F, Perlman S, Du L. Universal subunit vaccine protects against multiple SARS-CoV-2 variants and SARS-CoV. Npj Vaccines 2024;9(1):133.
    [13] Stillman ZS, Decker GE, Dworzak MR, Bloch ED, Fromen CA. Aluminum-based metal–organic framework nanoparticles as pulmonary vaccine adjuvants. Journal of Nanobiotechnology 2023;21(1):39.
    [14] Jackman JA, Yoon BK, Ouyang L, Wang N, Ferhan AR, Kim J, Majima T, Cho N. Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. Advanced Functional Materials 2021;31(12):2008352.
    [15] Chattopadhyay S, Chen J-Y, Chen H-W, Hu C-MJ. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics 2017;1(3):244–60.
    [16] Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Review of Vaccines 2019;18(3):269–80.
    [17] Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Review of Vaccines 2023;22(1):937–55.
    [18] Sanjanwala D, Shinde A, Patravale V. Formulation, sterilization, and clinical evaluation of microneedles for vaccine and biologic delivery: A review. International Journal of Pharmaceutics 2025;682:125874.
    [19] Li Z, He Y, Deng L, Zhang Z-R, Lin Y. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. Journal of Materials Chemistry B 2020;8(2):216–25.
    [20] Rouphael NG, Lai L, Tandon S, McCullough MP, Kong Y, Kabbani S, Natrajan MS, Xu Y, Zhu Y, Wang D, O’Shea J, Sherman A, Yu T, Henry S, McAllister D, Stadlbauer D, Khurana S, Golding H, Krammer F, Mulligan MJ, Prausnitz MR. Immunologic mechanisms of seasonal influenza vaccination administered by microneedle patch from a randomized phase I trial. Npj Vaccines 2021;6(1):89.
    [21] Chen YH, Lai KY, Chiu YH, Wu YW, Shiau AL, Chen MC. Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomaterialia 2019;97:230–8.
    [22] Berger MN, Mowbray ES, Farag MWA, Mathieu E, Davies C, Thomas C, Booy R, Forster AH, Skinner SR. Immunogenicity, safety, usability and acceptability of microarray patches for vaccination: a systematic review and meta-analysis. BMJ Global Health 2023;8(10):e012247.
    [23] Edwards C, Shah ShreyA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. Advanced Materials 2023;35(52):2302410.
    [24] Moniz T, Costa Lima SA, Reis S. Marine polymeric microneedles for transdermal drug delivery. Carbohydrate Polymers 2021;266:118098.
    [25] Huang Y, Yu F, Park Y-S, Wang J, Shin M-C, Chung HS, Yang VC. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 2010;31(34):9086–91.
    [26] Lung P, Yang J, Li Q. Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale 2020;12(10):5746–63.
    [27] Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP. Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Current Opinion in Biotechnology 2014;28:51–8.
    [28] Lu L, Kong WY, Zhang J, Firdaus F, Wells JW, Stephenson RJ, Toth I, Skwarczynski M, Cruz JLG. Utilizing murine dendritic cell line DC2.4 to evaluate the immunogenicity of subunit vaccines in vitro. Frontiers in Immunology 2024;15:1298721.
    [29] Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials 2011;32(11):3094–105.
    [30] Gu P, Cai G, Yang Y, Hu Y, Liu J, Wang D. Polyethylenimine-coated PLGA nanoparticles containing Angelica sinensis polysaccharide promote dendritic cells activation and associated molecular mechanisms. International Journal of Biological Macromolecules 2022;207:559–69.
    [31] Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Frontiers in Immunology 2020;11:1100.
    [32] Liang X, Duan J, Li X, Zhu X, Chen Y, Wang X, Sun H, Kong D, Li C, Yang J. Improved vaccine-induced immune responses via a ROS-triggered nanoparticle-based antigen delivery system. Nanoscale 2018;10(20):9489–503.
    [33] Carson CS, Becker KW, Garland KM, Pagendarm HM, Stone PT, Arora K, Wang-Bishop L, Baljon JJ, Cruz LD, Joyce S, Wilson JT. A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA. Journal of Controlled Release 2022;345:354–70.
    [34] Wusiman A, Gu P, Liu Z, Xu S, Zhang Y, Hu Y, Liu J, Wang D, Huang X. Cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses. International Journal of Nanomedicine 2019;Volume 14:3221–34.
    [35] Sun B, Xia T. Nanomaterial-based vaccine adjuvants. Journal of Materials Chemistry B 2016;4(33):5496–509.
    [36] Roth GA, Saouaf OM, Smith AAA, Gale EC, Hernández MA, Idoyaga J, Appel EA. Prolonged Codelivery of Hemagglutinin and a TLR7/8 Agonist in a Supramolecular Polymer–Nanoparticle Hydrogel Enhances Potency and Breadth of Influenza Vaccination. ACS Biomaterials Science & Engineering 2021;7(5):1889–99.
    [37] Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomaterialia 2020;108:1–21.
    [38] Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduction and Targeted Therapy 2023;8(1):283.
    [39] Nanishi E, Dowling DJ, Levy O. Toward precision adjuvants: optimizing science and safety. Current Opinion in Pediatrics 2020;32(1):125–38.
    [40] Campra NA, Montironi ID, Reinoso EB, Raviolo J, Moreno FR, Maletto B, Cariddi LN. A natural oil increases specific anti-OVA IgG levels and induces a cellular immune response combined with aluminum hydroxide. Journal of Leukocyte Biology 2021;109(1):223–32.
    [41] Pasquale A, Preiss S, Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines 2015;3(2):320–43.
    [42] Tao Y, Ju E, Li Z, Ren J, Qu X. Engineered CpG‐Antigen Conjugates Protected Gold Nanoclusters as Smart Self‐Vaccines for Enhanced Immune Response and Cell Imaging. Advanced Functional Materials 2014;24(7):1004–10.
    [43] Zhang S, Fan W, Ding C, Zhang M, Liu S, Liu W, Tang Z, Huang C, Yan L, Song S. Self-Assembling Sulfated Lactobacillus Exopolysaccharide Nanoparticles as Adjuvants for SARS-CoV-2 Subunit Vaccine Elicit Potent Humoral and Cellular Immune Responses. ACS Applied Materials & Interfaces 2024;16(15):18591–607.
    [44] Pu Y, Zhu C, Liao J, Gong L, Wu Y, Liu S, Wang H, Zhang Q, Lin Z. Antiviral nanomedicine: Advantages, mechanisms and advanced therapies. Bioactive Materials 2025;52:92–122.
    [45] Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers 2021;13(21):5346.
    [46] Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduction and Targeted Therapy 2024;9(1):34.
    [47] Petkar KC, Patil SM, Chavhan SS, Kaneko K, Sawant KK, Kunda NK, Saleem IY. An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021;13(4):455.
    [48] Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. Adv. Mater. 2020;32(13):1901255.
    [49] Xiao P, Wang J, Fang L, Zhao Z, Sun X, Liu X, Cao H, Zhang P, Wang D, Li Y. Nanovaccine‐Mediated Cell Selective Delivery of Neoantigens Potentiating Adoptive Dendritic Cell Transfer for Personalized Immunization. Advanced Functional Materials 2021;31(36):2104068.
    [50] Zhang C, Shi G, Zhang J, Song H, Niu J, Shi S, Huang P, Wang Y, Wang W, Li C, Kong D. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. Journal of Controlled Release 2017;256:170–81.
    [51] Campea MA, Majcher MJ, Lofts A, Hoare T. A Review of Design and Fabrication Methods for Nanoparticle Network Hydrogels for Biomedical, Environmental, and Industrial Applications. Advanced Functional Materials 2021;31(33).
    [52] Da Silva AB, Rufato KB, De Oliveira AC, Souza PR, Da Silva EP, Muniz EC, Vilsinski BH, Martins AF. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. International Journal of Biological Macromolecules 2020;161:977–98.
    [53] Wang C, Zhu W, Luo Y, Wang BZ. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14(4):1349–60.
    [54] Chen N, Wei M, Sun Y, Li F, Pei H, Li X, Su S, He Y, Wang L, Shi J, Fan C, Huang Q. Self‐Assembly of Poly‐Adenine‐Tailed CpG Oligonucleotide‐Gold Nanoparticle Nanoconjugates with Immunostimulatory Activity. Small 2014;10(2):368–75.
    [55] Hou C, Yi B, Jiang J, Chang Y-F, Yao X. Up-to-date vaccine delivery systems: robust immunity elicited by multifarious nanomaterials upon administration through diverse routes. Biomaterials Science 2019;7(3):822–35.
    [56] Dykman LA, Khlebtsov NG. Uptake of Engineered Gold Nanoparticles into Mammalian Cells. Chemical Reviews 2014;114(2):1258–88.
    [57] Gustafson HH, Holt-Casper D, Grainger DW. Nanoparticle Uptake: The Phagocyte Problem 2016;10(4):487–510.
    [58] Piella J, Bastús NG, Puntes V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjugate Chemistry 2017;28(1):88–97.
    [59] Li X, Wang B, Zhou S, Chen W, Chen H, Liang S, Zheng L, Yu H, Chu R, Wang M, Chai Z, Feng W. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. Journal of Nanobiotechnology 2020;18(1):45.
    [60] Xu L, Qiu J, Ren Q, Wang D, Guo A, Wang L, Hou K, Wang R, Liu Y. Gold nanoparticles modulate macrophage polarization to promote skeletal muscle regeneration. Materials Today Bio 2025;32:101653.
    [61] Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomaterials Science 2022;10(12):3029–53.
    [62] Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology 2010;10(11):787–96.
    [63] Quach QH, Ang SK, Chu JHJ, Kah JCY. Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomaterialia 2018;78:224–35.
    [64] Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC, DeSimone JM. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12(3):677–87.
    [65] Chen X, Gao C. Influences of size and surface coating of gold nanoparticles on inflammatory activation of macrophages. Colloids and Surfaces B: Biointerfaces 2017;160:372–80.
    [66] Fytianos K, Rodriguez-Lorenzo L, Clift MJD, Blank F, Vanhecke D, Von Garnier C, Petri-Fink A, Rothen-Rutishauser B. Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11(3):633–44.
    [67] Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Advanced Drug Delivery Reviews 2019;143:3–21.
    [68] Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. Journal of the American Chemical Society 2012;134(4):2139–47.
    [69] Johnston BD, Kreyling WG, Pfeiffer C, Schäffler M, Sarioglu H, Ristig S, Hirn S, Haberl N, Thalhammer S, Hauck SM, Semmler‐Behnke M, Epple M, Hühn J, Del Pino P, Parak WJ. Colloidal Stability and Surface Chemistry Are Key Factors for the Composition of the Protein Corona of Inorganic Gold Nanoparticles. Advanced Functional Materials 2017;27(42):1701956.
    [70] De Almeida L, Fujimura AT, Cistia MLD, Fonseca-Santos B, Imamura KB, Michels PaulAM, Chorilli M, Graminha MárciaAS. Nanotechnological Strategies for Treatment of Leishmaniasis—A Review. Journal of Biomedical Nanotechnology 2017;13(2):117–33.
    [71] Rabanel J-M, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. Journal of Controlled Release 2014;185:71–87.
    [72] Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery 2021;20(2):101–24.
    [73] Mosquera J, García I, Liz-Marzán LM. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Accounts of Chemical Research 2018;51(9):2305–13.
    [74] Ingrole RSJ, Azizoglu E, Dul M, Birchall JC, Gill HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials 2021;267:120491.
    [75] Kirkby M, Hutton ARJ, Donnelly RF. Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharmaceutical Research 2020;37(6):117.
    [76] Ai X, Yang J, Liu Z, Guo T, Feng N. Recent progress of microneedles in transdermal immunotherapy: A review. International Journal of Pharmaceutics 2024;662:124481.
    [77] Jia H, Liu J, Shi M, Abbas M, Xing R, Yan X. Microneedle delivery systems for vaccines and immunotherapy. Smart Molecules 2025:e20240067.
    [78] Sen O, Poddar P, Sarkar P, Das S, Manna S. Current advancements in microneedle technology for therapeutic and biomedical applications. Sensors International 2025;6:100325.
    [79] Qu F, Geng R, Liu Y, Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 2022;12(7):3372–406.
    [80] Dalvi M, Kharat P, Thakor P, Bhavana V, Singh SB, Mehra NK. Panorama of dissolving microneedles for transdermal drug delivery. Life Sciences 2021;284:119877.
    [81] Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. International Journal of Pharmaceutics 2021;604:120749.
    [82] Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle‐mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian Journal of Pharmaceutical Sciences 2022;17(1):70–86.
    [83] Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, Peng K, Raj Singh Thakur R, Donnelly RF. Microneedle array systems for long-acting drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 2021;159:44–76.
    [84] Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nature Biomedical Engineering 2019;3(3):220–9.
    [85] Chen M-C, Ling M-H, Wang K-W, Lin Z-W, Lai B-H, Chen D-H. Near-Infrared Light-Responsive Composite Microneedles for On-Demand Transdermal Drug Delivery. Biomacromolecules 2015;16(5):1598–607.
    [86] Tran KTM, Gavitt TD, Farrell NJ, Curry EJ, Mara AB, Patel A, Brown L, Kilpatrick S, Piotrowska R, Mishra N, Szczepanek SM, Nguyen TD. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nature Biomedical Engineering 2020;5(9):998–1007.
    [87] Nesovic LD, Roach CJ, Joshi G, Gill HS. Delivery of gold nanoparticle-conjugated M2e influenza vaccine in mice using coated microneedles. Biomaterials Science 2023;11(17):5859–71.
    [88] Du G, Woythe L, Van Der Maaden K, Leone M, Romeijn S, Kros A, Kersten G, Jiskoot W, Bouwstra JA. Coated and Hollow Microneedle-Mediated Intradermal Immunization in Mice with Diphtheria Toxoid Loaded Mesoporous Silica Nanoparticles. Pharmaceutical Research 2018;35(10):189.
    [89] DeMuth PC, Min Y, Irvine DJ, Hammond PT. Implantable Silk Composite Microneedles for Programmable Vaccine Release Kinetics and Enhanced Immunogenicity in Transcutaneous Immunization. Advanced Healthcare Materials 2014;3(1):47–58.
    [90] Lee J, Neustrup MA, Slütter B, O’Mahony C, Bouwstra JA, Van Der Maaden K. Intradermal Vaccination with PLGA Nanoparticles via Dissolving Microneedles and Classical Injection Needles. Pharmaceutical Research 2024;41(2):305–19.
    [91] Xiu X, Fu H, Zhang R, Ma S, Guo P, Li Z, Zhu Y, Ma F. Novel Antigen-Presenting Cell-Targeted Nanoparticles Enhance Split Vaccine Immunity Through Microneedles Inoculation. International Journal of Nanomedicine 2025;20:5529–49.
    [92] Li M, Yang L, Wang C, Cui M, Wen Z, Liao Z, Han Z, Zhao Y, Lang B, Chen H, Qian J, Shu Y, Zeng X, Sun C. Rapid Induction of Long-Lasting Systemic and Mucosal Immunity via Thermostable Microneedle-Mediated Chitosan Oligosaccharide-Encapsulated DNA Nanoparticles. ACS Nano 2023;17(23):24200–17.
    [93] Guillot AJ, Martínez‐Navarrete M, Zinchuk‐Mironova V, Melero A. Microneedle‐assisted transdermal delivery of nanoparticles: Recent insights and prospects. WIREs Nanomedicine and Nanobiotechnology 2023;15(4):e1884.
    [94] McCright J, Naiknavare R, Yarmovsky J, Maisel K. Targeting Lymphatics for Nanoparticle Drug Delivery. Frontiers in Pharmacology 2022;13.
    [95] Nguyen AV, Soulika AM. The Dynamics of the Skin’s Immune System. International Journal of Molecular Sciences 2019;20(8):1811.
    [96] Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nature Reviews Immunology 2015;15(4):203–16.
    [97] Maisel K, McClain CA, Bogseth A, Thomas SN. Nanotechnologies for Physiology-Informed Drug Delivery to the Lymphatic System. Annual Review of Biomedical Engineering 2023;25(1):233–56.
    [98] Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 2019;27:73–98.
    [99] Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. Journal of Clinical Investigation 2016;126(3):799–808.
    [100] Li H, Cui J, Zhang T, Lin F, Zhang G, Feng Z. Research Progress on Chitosan Microneedle Arrays in Transdermal Drug Delivery. International Journal of Nanomedicine 2024;19:12957–73.
    [101] Saeedi M, Vahidi O, Moghbeli MR, Ahmadi S, Asadnia M, Akhavan O, Seidi F, Rabiee M, Saeb MR, Webster TJ, Varma RS, Sharifi E, Zarrabi A, Rabiee N. Customizing nano-chitosan for sustainable drug delivery. Journal of Controlled Release 2022;350:175–92.
    [102] Reznickova A, Slavikova N, Kolska Z, Kolarova K, Belinova T, Hubalek Kalbacova M, Cieslar M, Svorcik V. PEGylated gold nanoparticles: Stability, cytotoxicity and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;560:26–34.
    [103] Zhang L, Xie X, Liu D, Xu ZP, Liu R. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. Biomaterials 2018;174:54–66.
    [104] Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, Kim H, Kim J, Shin EC, Jon S. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. Journal of Controlled Release 2017;256:56–67.
    [105] Gao F, Mi Y, Wu X, Yao J, Qi Q, Chen W, Cao Z. Preparation of quaternized chitosan/Ag composite nanogels in inverse miniemulsions for durable and antimicrobial cotton fabrics. Carbohydrate Polymers 2022;278:118935.
    [106] Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, Seidel GD, Yuldasheva N, Tamarkin L. Phase I and Pharmacokinetic Studies of CYT-6091, a Novel PEGylated Colloidal Gold-rhTNF Nanomedicine. Clinical Cancer Research 2010;16(24):6139–49.
    [107] Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, Acosta N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021;13(19):3256.
    [108] Gonciarz W, Balcerczak E, Brzeziński M, Jeleń A, Pietrzyk-Brzezińska AJ, Narayanan VHB, Chmiela M. Chitosan-based formulations for therapeutic applications. A recent overview. Journal of Biomedical Science 2025;32(1):62.
    [109] Qian L, Zhang K, Guo X, Yu M. What happens when chitin becomes chitosan? A single-molecule study. RSC Advances 2023;13(4):2294–300.
    [110] Kumar G, Virmani T, Misra SK, Sharma A, Pathak K. Exploration of chitosan and its modified derivatives as vaccine adjuvant: A review. Carbohydrate Polymer Technologies and Applications 2024;8:100537.
    [111] Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022;55(16):6913–37.
    [112] Moran HBT, Turley JL, Andersson M, Lavelle EC. Immunomodulatory properties of chitosan polymers. Biomaterials 2018;184:1–9.
    [113] Li X, Xing R, Xu C, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effect of chitosan and quaternary chitosan: A review of potential vaccine adjuvants. Carbohydrate Polymers 2021;264:118050.
    [114] Zhao J, Zhang Q-B, Liu B, Piao X-H, Yan Y-L, Hu X-G, Zhou K, Zhang Y-T, Feng N-P. Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant. International Journal of Nanomedicine 2017;12:4763–72.
    [115] Wang Z-B, Xu J. Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant–Antigen Codelivery. Vaccines 2020;8(1):128.
    [116] Sokolova V, Westendorf AM, Buer J, Überla K, Epple M. The potential of nanoparticles for the immunization against viral infections. Journal of Materials Chemistry B 2015;3(24):4767–79.
    [117] Hansen LJJ, Daoussi R, Vervaet C, Remon J-P, De Beer TRM. Freeze-drying of live virus vaccines: A review. Vaccine 2015;33(42):5507–19.
    [118] Im SH, Kim CY, Jung Y, Jang Y, Kim SH. Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Biomaterials Science 2017;5(3):422–31.
    [119] Zhou Q, Zhang Y, Du J, Li Y, Zhou Y, Fu Q, Zhang J, Wang X, Zhan L. Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses. ACS Nano 2016;10(2):2678–92.
    [120] Balasubramanian SK, Yang L, Yung L-YL, Ong C-N, Ong W-Y, Yu LE. Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010;31(34):9023–30.
    [121] Selvamani V. Stability Studies on Nanomaterials Used in Drugs. Characterization and Biology of Nanomaterials for Drug Delivery, Elsevier; 2019, p. 425–44.
    [122] Staroverov SA, Volkov AA, Mezhenny PV, Domnitsky IYu, Fomin AS, Kozlov SV, Dykman LA, Guliy OI. Prospects for the use of spherical gold nanoparticles in immunization. Applied Microbiology and Biotechnology 2019;103(1):437–47.
    [123] Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018;11(7):1154.
    [124] Alkilany AM, Abulateefeh SR, Mills KK, Bani Yaseen AI, Hamaly MA, Alkhatib HS, Aiedeh KM, Stone JW. Colloidal Stability of Citrate and Mercaptoacetic Acid Capped Gold Nanoparticles upon Lyophilization: Effect of Capping Ligand Attachment and Type of Cryoprotectants. Langmuir 2014;30(46):13799–808.
    [125] Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews 2015;44(17):6287–305.
    [126] Ali ME, Hashim U, Mustafa S, Che Man YB, Islam KhN. Gold Nanoparticle Sensor for the Visual Detection of Pork Adulteration in Meatball Formulation. Journal of Nanomaterials 2012;2012(1):103607.
    [127] Wang Y, Quinsaat JEQ, Ono T, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato S, Miura Y, Yamamoto T. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol). Nature Communications 2020;11(1):6089.
    [128] Maturi M, Locatelli E, Monaco I, Comes Franchini M. Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging. Biomaterials Science 2019;7(5):1746–75.
    [129] Thakral S, Sonje J, Munjal B, Suryanarayanan R. Stabilizers and their interaction with formulation components in frozen and freeze-dried protein formulations. Advanced Drug Delivery Reviews 2021;173:1–19.
    [130] Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. European Journal of Pharmaceutics and Biopharmaceutics 2021;165:345–60.
    [131] Khairan K, Ba LA, Burkholz T, Leroch M, Hahn M, Schwab T, Klotz M, Schaefer K-H, Jacob C. Electrochemical Potential-Biological Activity Relationships of Cyclic Sulfur-Containing Molecules Against Steinernema feltiae, Botrytis cinerea, and Neuro 2a Cell Line. Current Pharmacology Reports 2019;5(3):174–87.
    [132] Yang A, Bai Y, Dong X, Ma T, Zhu D, Mei L, Lv F. Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy. Acta Biomaterialia 2021;133:257–67.
    [133] Brown JL, Short B, Ware A, Sherry L, Kean R, Ramage G. Cell Viability Assays for Candida auris. In: Lorenz A, editor. Candida auris, vol. 2517, New York, NY: Springer US; 2022, p. 129–53.
    [134] Gupta A, Moyano DF, Parnsubsakul A, Papadopoulos A, Wang L-S, Landis RF, Das R, Rotello VM. Ultrastable and Biofunctionalizable Gold Nanoparticles. ACS Applied Materials & Interfaces 2016;8(22):14096–101.
    [135] Kapadia CH, Tian S, Perry JL, Luft JC, DeSimone JM. Role of Linker Length and Antigen Density in Nanoparticle Peptide Vaccine. ACS Omega 2019;4(3):5547–55.
    [136] Yang Q, Lai SK. Anti‐ PEG immunity: emergence, characteristics, and unaddressed questions. WIREs Nanomedicine and Nanobiotechnology 2015;7(5):655–77.
    [137] Deffner M, Schulz F, Lange H. Impact of the Crosslinker’s Molecular Structure on the Aggregation of Gold Nanoparticles. Zeitschrift Für Physikalische Chemie 2017;231(1):19–31.
    [138] Zimbone M, Calcagno L, Messina G, Baeri P, Compagnini G. Dynamic light scattering and UV–vis spectroscopy of gold nanoparticles solution. Materials Letters 2011;65(19–20):2906–9.
    [139] Stiufiuc R, Iacovita C, Nicoara R, Stiufiuc G, Florea A, Achim M, Lucaciu CM. One‐Step Synthesis of PEGylated Gold Nanoparticles with Tunable Surface Charge. Journal of Nanomaterials 2013;2013(1):146031.
    [140] Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chemical Science 2017;8(3):1719–35.
    [141] Mateu Ferrando R, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. Drug Discovery Today: Technologies 2020;38:57–67.
    [142] Cybulsky MI, Cheong C, Robbins CS. Macrophages and Dendritic Cells: Partners in Atherogenesis. Circulation Research 2016;118(4):637–52.
    [143] Wang J, Zhu R, Gao B, Wu B, Li K, Sun X, Liu H, Wang S. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials 2014;35(1):466–78.
    [144] Wang C, Zhu W, Wang B-Z. Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. International Journal of Nanomedicine 2017;12:4747–62.
    [145] Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology 2021;21(2):83–100.
    [146] Tesfaye DY, Gudjonsson A, Bogen B, Fossum E. Targeting Conventional Dendritic Cells to Fine-Tune Antibody Responses. Frontiers in Immunology 2019;10:1529.
    [147] Weng J, Yang J, Wang W, Wen J, Fang M, Zheng G, Xie J, Zheng X, Feng L, Yan Q. Application of microneedles combined with dendritic cell-targeted nanovaccine delivery system in percutaneous immunotherapy for triple-negative breast cancer. Nanotechnology 2023;34(47):475101.
    [148] Korupalli C, Pan WY, Yeh CY, Chen PM, Mi FL, Tsai HW, Chang Y, Wei HJ, Sung HW. Single-injecting, bioinspired nanocomposite hydrogel that can recruit host immune cells in situ to elicit potent and long-lasting humoral immune responses. Biomaterials 2019;216:119268.
    [149] Pitorre M, Bastiat G, Dit Chatel EM, Benoit J-P. Passive and specific targeting of lymph nodes: the influence of the administration route. European Journal of Nanomedicine 2015;7(2):121–8.
    [150] Ahmad Z, Khan MI, Siddique MI, Sarwar HS, Shahnaz G, Hussain SZ, Bukhari NI, Hussain I, Sohail MF. Fabrication and Characterization of Thiolated Chitosan Microneedle Patch for Transdermal Delivery of Tacrolimus. AAPS PharmSciTech 2020;21(2):68.
    [151] Anirudhan TS, Nair SS. Gold Nanoparticle and Hydrophobic Nanodiamond Based Synergistic System: A Way to Overcome Skin Barrier Function. Bioconjugate Chemistry 2018;29(10):3262–72.
    [152] Ou J, Xing M, Lu G, Wan C, Li K, Jiang W, Qian W, Liu Y, Xu R, Cheng A, Zhu M, Ju X, Gao Y, Tian Y, Niu Z. Transcutaneous Immunization of 1D Rod-Like Tobacco-Mosaic-Virus-Based Peptide Vaccine via Tip-Loaded Dissolving Microneedles. Nano Letters 2024;24(42):13118–25.
    [153] Adib Y, Bensussan A, Michel L. Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators of Inflammation 2022;2022(1):5344085.
    [154] Makarkov AI, Golizeh M, Ruiz-Lancheros E, Gopal AA, Costas-Cancelas IN, Chierzi S, Pillet S, Charland N, Landry N, Rouiller I, Wiseman PW, Ndao M, Ward BJ. Plant-derived virus-like particle vaccines drive cross-presentation of influenza A hemagglutinin peptides by human monocyte-derived macrophages. Npj Vaccines 2019;4(1):17.
    [155] Mejía-Méndez JL, Vazquez-Duhalt R, Hernández LR, Sánchez-Arreola E, Bach H. Virus-like Particles: Fundamentals and Biomedical Applications. International Journal of Molecular Sciences 2022;23(15):8579.
    [156] Lee D, Hong JH. Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020;12(3):217.
    [157] Seydoux E, Rothen-Rutishauser B, Nita IM, Balog S, Gazdhar A, Stumbles PA, Petri-Fink A, Blank F, Garnier C von. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation. International Journal of Nanomedicine 2014;9:3885–902.
    [158] Liang X-H, Nichols JG, De Hoyos CL, Sun H, Zhang L, Crooke ST. Golgi-58K can re-localize to late endosomes upon cellular uptake of PS-ASOs and facilitates endosomal release of ASOs. Nucleic Acids Research 2021;49(14):8277–93.
    [159] Domalik-Pyzik P, Chłopek J, Pielichowska K. Chitosan-Based Hydrogels: Preparation, Properties, and Applications. In: Mondal MdIH, editor. Cellulose-Based Superabsorbent Hydrogels, Cham: Springer International Publishing; 2019, p. 1665–93.
    [160] Kaushik JK, Bhat R. Why Is Trehalose an Exceptional Protein Stabilizer? Journal of Biological Chemistry 2003;278(29):26458–65.
    [161] Shin JY, Han D, Yoon KY, Jeong DH, Park YI. Clinical Safety and Efficacy Evaluation of a Dissolving Microneedle Patch Having Dual Anti-Wrinkle Effects With Safe and Long-Term Activities. Annals of Dermatology 2024;36(4):215.
    [162] Ning T, Yang F, Chen D, Jia Z, Yuan R, Du Z, Liu S, Yu Y, Dai X, Niu X, Fan Y. Synergistically Detachable Microneedle Dressing for Programmed Treatment of Chronic Wounds. Advanced Healthcare Materials 2022;11(11):2102180.
    [163] Azarikhah P, Saifullah KM, Faraji Rad Z. Age‐Dependent Finite Element Analysis of Microneedle Penetration into Human Skin: Influence of Insertion Velocity, and Microneedle’s Geometry and Material. Macromolecular Materials and Engineering 2025;310(11):e00123.
    [164] Gohil SV, Padmanabhan A, Kan H-M, Khanal M, Nair LS. Degradation-Dependent Protein Release from Enzyme Sensitive Injectable Glycol Chitosan Hydrogel. Tissue Engineering Part A 2021;27(13–14):867–80.
    [165] Kim S, Cui Z-K, Koo B, Zheng J, Aghaloo T, Lee M. Chitosan–Lysozyme Conjugates for Enzyme-Triggered Hydrogel Degradation in Tissue Engineering Applications. ACS Applied Materials & Interfaces 2018;10(48):41138–45.

    QR CODE