| 研究生: |
李哲欣 Lee, Che-Hsin |
|---|---|
| 論文名稱: |
利用減毒豬霍亂沙門氏桿菌對癌症的基因治療 Employment of Salmonella choleraesuis in cancer gene therapy |
| 指導教授: |
蕭璦莉
Shiau, Ai-Li |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 基因治療 、腫瘤 、減毒豬霍亂沙門氏桿菌 |
| 外文關鍵詞: | Salmonella choleraesuis, gene therapy, tumor |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於自然界中,某些兼性厭氧或絕對厭氧的細菌在臨床及動物實驗中發現,可以專一地標定到腫瘤並且在腫瘤中複製繁殖。似乎利用細菌來治療腫瘤是一種新的治療策略。在此研究中,我們證實減毒豬霍亂沙門氏桿菌可作為抑制血管新生基因治療載體甚至發現其本身就具有抵抗腫瘤生長的能力。首先利用減毒豬霍亂沙門氏桿菌攜帶報告基因,全身性給予帶有腫瘤的小鼠中,發現攜帶基因的減毒豬霍亂沙門氏桿菌大量聚集於腫瘤中,並且可以將基因大量傳達至腫瘤。這樣一個現象可維持至少十天以上,且其報告基因於腫瘤中表達的強度遠高於其他正常器官的1800倍以上。於是當利用減毒豬霍亂沙門氏桿菌攜帶抗血管新生基因來對抗腫瘤時,發現不僅僅可以明顯的抑制小鼠腫瘤的生長並且延長其存活率。在腫瘤組織切片中也發現這樣的一個策略,減少了腫瘤中血管的密度、降低血管內皮細胞生長因子的表現量且有更多的免疫細胞浸潤於腫瘤中。再者我們也利用減毒豬霍亂沙門氏桿菌合併低計量的化療藥劑,於小鼠模式評估其對好發於國人的肝癌及肺癌之治療效果。將減毒豬霍亂沙門氏桿菌利用腹腔注射入帶有腫瘤的小鼠,也同樣發現減毒豬霍亂沙門氏桿菌不僅可以抑制皮下腫瘤的生長並且對於轉移的腫瘤一樣具有療效。當減毒豬霍亂沙門氏桿菌合併低計量的cisplatin時發現有增加減毒豬霍亂沙門氏桿菌抑制腫瘤生長的能力並更加延長小鼠存活率。在此一方式治療下,發現更多嗜中性球及CD8+ T細胞浸潤於腫瘤中且增加更多死亡的腫瘤細胞。由實驗結果發現減毒豬霍亂沙門氏桿菌不僅可作為基因治療的載體,且本身具有的腫瘤裂解及吸引免疫細胞浸潤腫瘤的能力,再合併其他傳統的治療方法下更加提升其療效,對於原位甚至是轉移的腫瘤都可以提供另一種選擇及思考方向。
Some anaerobic and facultatively anaerobic bacteria have been used experimentally as anticancer agents because of their selective growth in tumors. In this study, we exploited attenuated Salmonella choleraesuis as a vector to deliver antiangiogenic genes for tumor-targeted gene therapy and a tumoricidal agent. Attenuated S. choleraesuis carrying reporter genes was used to evaluate its abilities of preferential accumulation and gene delivery in tumor sites. Transgene expression via S. choleraesuis-mediated gene transfer also persisted for at least 10 days in tumor sites. The level of transgene expression via S. choleraesuis-mediated gene transfer in tumors could reach more than 1800-fold higher than in livers and spleens. When administered into mice bearing subcutaneous or pulmonary metastatic tumors, S. choleraesuis carrying antiangiogenic genes significantly inhibited tumor growth and enhanced survival of the mice. Furthermore, immunohistochemical studies in the tumors revealed decreased intratumoral microvessel density, reduced expression of vascular endothelial growth factor (VEGF), and increased infiltration of CD8+ T cells. We also demonstrated S. choleraesuis as a single-agent therapy and as part of a combination therapy with low-dose cisplatin for syngeneic murine lung tumor and hepatoma. S. choleraesuis was also capable of delaying tumor growth and enhancing survival in both subcutaneous tumor and experimental metastasis models. More strikingly, the combination of S. choleraesuis plus cisplatin acted additively to retard tumor growth and extensively prolong the survival time of the mice bearing hepatomas or lung tumors. Such combination treatment also increased infiltrating neutrophils and CD8+ T cells, as well as apoptotic cells in the tumors. These findings suggest that S. choleraesuis, which exerts oncolytic effects and enhances antitumor immune responses, represents a promising strategy for the treatment of primary and metastatic tumors.
References
Ades,E.W., Candal,F.J., Swerlick,R.A., George,V.G., Summers,S., Bosse,D.C., and Lawley,T.J. (1992). HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 99, 683-690.
Bannerman,D.D., Tupper,J.C., Ricketts,W.A., Bennett,C.F., Winn,R.K., and Harlan,J.M. (2001). A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis. J. Biol. Chem. 276, 14924-14932.
Beecken,W.D., Fernandez,A., Joussen,A.M., Achilles,E.G., Flynn,E., Lo,K.M., Gillies,S.D., Javaherian,K., Folkman,J., and Shing,Y. (2001). Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. J. Natl. Cancer Inst. 93, 382-387.
Bergers,G., Javaherian,K., Lo,K.M., Folkman,J., and Hanahan,D. (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808-812.
Bocci,G., Francia,G., Man,S., Lawler,J., and Kerbel,R.S. (2003). Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc. Natl. Acad. Sci. U. S. A 100, 12917-12922.
Boehm,T., Folkman,J., Browder,T., and O'Reilly,M.S. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404-407.
Brown,J.M. and Giaccia,A.J. (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58, 1408-1416.
Carmeliet,P., Dor,Y., Herbert,J.M., Fukumura,D., Brusselmans,K., Dewerchin,M., Neeman,M., Bono,F., Abramovitch,R., Maxwell,P., Koch,C.J., Ratcliffe,P., Moons,L., Jain,R.K., Collen,D., and Keshert,E. (1998). Role of HIF-1 α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490.
Carrau,R.L., Barnes,E.L., Snyderman,C.H., Petruzzelli,G., Kachman,K., Rueger,R., D'Amico,F., and Johnson,J.T. (1995). Tumor angiogenesis as a predictor of tumor aggressiveness and metastatic potential in squamous cell carcinoma of the head and neck. Invasion Metastasis 15, 197-202.
Chen,Z.S., Pohl,J., Lawley,T.J., and Swerlick,R.A. (1996). Human microvascular endothelial cells adhere to thrombospondin-1 via an RGD/CSVTCG domain independent mechanism. J. Invest Dermatol. 106, 215-220.
Clairmont,C., Lee,K.C., Pike,J., Ittensohn,M., Low,K.B., Pawelek,J., Bermudes,D., Brecher,S.M., Margitich,D., Turnier,J., Li,Z., Luo,X., King,I., and Zheng,L.M. (2000). Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J. Infect. Dis. 181, 1996-2002.
Coley,W.B. (1991). The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop 3-11.
Dang,L.H., Bettegowda,C., Huso,D.L., Kinzler,K.W., and Vogelstein,B. (2001). Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl. Acad. Sci. U. S. A 98, 15155-15160.
Dkhissi,F., Lu,H., Soria,C., Opolon,P., Griscelli,F., Liu,H., Khattar,P., Mishal,Z., Perricaudet,M., and Li,H. (2003). Endostatin exhibits a direct antitumor effect in addition to its antiangiogenic activity in colon cancer cells. Hum. Gene Ther. 14, 997-1008.
Edelstein,M.L., Abedi,M.R., Wixon,J., and Edelstein,R.M. (2004). Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med. 6, 597-602.
Engelbart,K. and Gericke,D. (1964). Oncolysis by Clostrida. V. transplanted tumors of the hamster. Cancer Res. 24, 239-242.
Folkman,J., Watson,K., Ingber,D., and Hanahan,D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58-61.
Forbes,N.S., Munn,L.L., Fukumura,D., and Jain,R.K. (2003). Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res. 63, 5188-5193.
Fox,M.E., Lemmon,M.J., Mauchline,M.L., Davis,T.O., Giaccia,A.J., Minton,N.P., and Brown,J.M. (1996). Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3, 173-178.
Fujii,Y., Kimura,S., Arai,S., and Sendo,F. (1987). In vivo antitumor effect of lymphokine-activated rodent polymorphonuclear leukocytes. Cancer Res. 47, 6000-6005.
Gossen,M., Freundlieb,S., Bender,G., Muller,G., Hillen,W., and Bujard,H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769.
Graeber,T.G., Osmanian,C., Jacks,T., Housman,D.E., Koch,C.J., Lowe,S.W., and Giaccia,A.J. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88-91.
Grillot-Courvalin,C., Goussard,S., and Courvalin,P. (1999). Bacteria as gene delivery vectors for mammalian cells. Curr. Opin. Biotechnol. 10, 477-481.
Grillot-Courvalin,C., Goussard,S., Huetz,F., Ojcius,D.M., and Courvalin,P. (1998). Functional gene transfer from intracellular bacteria to mammalian cells. Nat. Biotechnol. 16, 862-866.
Hajitou,A., Grignet,C., Devy,L., Berndt,S., Blacher,S., Deroanne,C.F., Bajou,K., Fong,T., Chiang,Y., Foidart,J.M., and Noel,A. (2002). The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. FASEB J. 16, 1802-1804.
Harrington,K., Alvarez-Vallina,L., Crittenden,M., Gough,M., Chong,H., Diaz,R.M., Vassaux,G., Lemoine,N., and Vile,R. (2002). Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery? Hum. Gene Ther. 13, 1263-1280.
Jaeger,T.M., Weidner,N., Chew,K., Moore,D.H., Kerschmann,R.L., Waldman,F.M., and Carroll,P.R. (1995). Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. J. Urol. 154, 69-71.
Kasai,S., Fujimoto,S., Nitta,K., Baba,H., and Kunimoto,T. (1991). Antitumor activity of polymorphonuclear leukocytes activated by a beta-1,3-D-glucan. J. Pharmacobiodyn. 14, 519-525.
Kimura,N.T., Taniguchi,S., Aoki,K., and Baba,T. (1980). Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 40, 2061-2068.
King,I., Bermudes,D., Lin,S., Belcourt,M., Pike,J., Troy,K., Le,T., Ittensohn,M., Mao,J., Lang,W., Runyan,J.D., Luo,X., Li,Z., and Zheng,L.M. (2002). Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum. Gene Ther. 13, 1225-1233.
Kirsch,M., Strasser,J., Allende,R., Bello,L., Zhang,J., and Black,P.M. (1998). Angiostatin suppresses malignant glioma growth in vivo. Cancer Res. 58, 4654-4659.
Kisker,O., Becker,C.M., Prox,D., Fannon,M., D'Amato,R., Flynn,E., Fogler,W.E., Sim,B.K., Allred,E.N., Pirie-Shepherd,S.R., and Folkman,J. (2001). Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 61, 7669-7674.
Klement,G., Baruchel,S., Rak,J., Man,S., Clark,K., Hicklin,D.J., Bohlen,P., and Kerbel,R.S. (2000). Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest 105, R15-R24.
Koshikawa,N., Takenaga,K., Tagawa,M., and Sakiyama,S. (2000). Therapeutic efficacy of the suicide gene driven by the promoter of vascular endothelial growth factor gene against hypoxic tumor cells. Cancer Res 60, 2936-2941.
Krusch,S., Domann,E., Frings,M., Zelmer,A., Diener,M., Chakraborty,T., and Weiss,S. (2002). Listeria monocytogenes mediated CFTR transgene transfer to mammalian cells. J. Gene Med. 4, 655-667.
Lee,C.H., Wu,C.L., and Shiau,A.L. (2004). Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 6, 1382-1393.
Lee,C.H., Wu,C.L., and Shiau,A.L. (2005). Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12, 175-184.
Li,X., Fu,G.F., Fan,Y.R., Liu,W.H., Liu,X.J., Wang,J.J., and Xu,G.X. (2003). Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: Selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther 10, 105-111.
Low,K.B., Ittensohn,M., Le,T., Platt,J., Sodi,S., Amoss,M., Ash,O., Carmichael,E., Chakraborty,A., Fischer,J., Lin,S.L., Luo,X., Miller,S.I., Zheng,L., King,I., Pawelek,J.M., and Bermudes,D. (1999). Lipid A mutant Salmonella with suppressed virulence and TNF α induction retain tumor-targeting in vivo. Nat Biotechnol. 17, 37-41.
Luciw,P.A., Shaw,K.E., Unger,R.E., Planelles,V., Stout,M.W., Lackner,J.E., Pratt-Lowe,E., Leung,N.J., Banapour,B., and Marthas,M.L. (1992). Genetic and biological comparisons of pathogenic and nonpathogenic molecular clones of simian immunodeficiency virus (SIVmac). AIDS Res. Hum. Retroviruses 8, 395-402.
Maeda,H., Fang,J., Inutsuka,T., and Kitamoto,Y. (2003). Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3, 319-328.
Merritt,R.E., Mahtabifard,A., Yamada,R.E., Crystal,R.G., and Korst,R.J. (2003). Cisplatin augments cytotoxic T-lymphocyte-mediated antitumor immunity in poorly immunogenic murine lung cancer. J. Thorac. Cardiovasc. Surg. 126, 1609-1617.
Miao,W.M., Seng,W.L., Duquette,M., Lawler,P., Laus,C., and Lawler,J. (2001). Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-β-dependent and -independent mechanisms. Cancer Res. 61, 7830-7839.
Mishima,K., Mazar,A.P., Gown,A., Skelly,M., Ji,X.D., Wang,X.D., Jones,T.R., Cavenee,W.K., and Huang,H.J. (2000). A peptide derived from the non-receptor-binding region of urokinase plasminogen activator inhibits glioblastoma growth and angiogenesis in vivo in combination with cisplatin. Proc. Natl. Acad. Sci. U. S. A 97, 8484-8489.
Nemunaitis,J., Cunningham,C., Senzer,N., Kuhn,J., Cramm,J., Litz,C., Cavagnolo,R., Cahill,A., Clairmont,C., and Sznol,M. (2003). Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10, 737-744.
Nuyts,S., Van Mellaert,L., Theys,J., Landuyt,W., Bosmans,E., Anne,J., and Lambin,P. (2001). Radio-responsive recA promoter significantly increases TNF α production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 8, 1197-1201.
Nuyts,S., Van Mellaert,L., Theys,J., Landuyt,W., Lambin,P., and Anne,J. (2002). Clostridium spores for tumor-specific drug delivery. Anticancer Drugs 13, 115-125.
O'Reilly,M.S., Boehm,T., Shing,Y., Fukai,N., Vasios,G., Lane,W.S., Flynn,E., Birkhead,J.R., Olsen,B.R., and Folkman,J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-285.
O'Reilly,M.S., Holmgren,L., Shing,Y., Chen,C., Rosenthal,R.A., Moses,M., Lane,W.S., Cao,Y., Sage,E.H., and Folkman,J. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328.
Paglia,P., Terrazzini,N., Schulze,K., Guzman,C.A., and Colombo,M.P. (2000). In vivo correction of genetic defects of monocyte/macrophages using attenuated Salmonella as oral vectors for targeted gene delivery. Gene Ther. 7, 1725-1730.
Pawelek,J.M., Low,K.B., and Bermudes,D. (1997). Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57, 4537-4544.
Pawelek,J.M., Low,K.B., and Bermudes,D. (2003). Bacteria as tumour-targeting vectors. Lancet Oncol. 4, 548-556.
Pawelek,J.M., Sodi,S., Chakraborty,A.K., Platt,J.T., Miller,S., Holden,D.W., Hensel,M., and Low,K.B. (2002). Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther 9, 813-818.
Rodriguez-Manzaneque,J.C., Lane,T.F., Ortega,M.A., Hynes,R.O., Lawler,J., and Iruela-Arispe,M.L. (2001). Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. U. S. A 98, 12485-12490.
Rosenberg,S.A., Aebersold,P., Cornetta,K., Kasid,A., Morgan,R.A., Moen,R., Karson,E.M., Lotze,M.T., Yang,J.C., Topalian,S.L., and . (1990). Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323, 570-578.
Rosenberg,S.A., Spiess,P.J., and Kleiner,D.E. (2002). Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J. Immunother. 25, 218-225.
Schiller,J.H. and Bittner,G. (1999). Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization. Clin. Cancer Res. 5, 4287-4294.
Shiau,A.L., Chen,Y.L., Liao,C.Y., Huang,Y.S., and Wu,C.L. (2001). Prothymosin α enhances protective immune responses induced by oral DNA vaccination against pseudorabies delivered by Salmonella choleraesuis. Vaccine 19, 3947-3956.
Shiau,A.L., Yang,H.M., Wu,P., and Wu,C.L. (1998). Provision of positive and negative selections in retroviral vectors containing the cytosine deaminase gene. Gene Ther. 5, 1571-1574.
Shibata,T., Giaccia,A.J., and Brown,J.M. (2000). Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther 7, 493-498.
Short,S.M., Derrien,A., Narsimhan,R.P., Lawler,J., Ingber,D.E., and Zetter,B.R. (2005). Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by β1 integrins. J. Cell Biol. 168, 643-653.
Sizemore,D.R., Branstrom,A.A., and Sadoff,J.C. (1995). Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299-302.
Smith,H.W. (1965). The immunization of mice, calves and pigs against Salmonella dublin and Salmonella choleraesuis infections. J. Hyg. (Lond) 63, 117-135.
Soghomonyan,S.A., Doubrovin,M., Pike,J., Luo,X., Ittensohn,M., Runyan,J.D., Balatoni,J., Finn,R., Tjuvajev,J.G., Blasberg,R., and Bermudes,D. (2005). Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 12, 101-108.
Steidler,L., Neirynck,S., Huyghebaert,N., Snoeck,V., Vermeire,A., Goddeeris,B., Cox,E., Remon,J.P., and Remaut,E. (2003). Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785-789.
Straume,O., Salvesen,H.B., and Akslen,L.A. (1999). Angiogenesis is prognostically important in vertical growth phase melanomas. Int. J. Oncol. 15, 595-599.
Sznol,M., Lin,S.L., Bermudes,D., Zheng,L.M., and King,I. (2000). Use of preferentially replicating bacteria for the treatment of cancer. J. Clin. Invest 105, 1027-1030.
Tan,G.H., Tian,L., Wei,Y.Q., Zhao,X., Li,J., Wu,Y., Wen,Y.J., Yi,T., Ding,Z.Y., Kan,B., Mao,Y.Q., Deng,H.X., Li,H.L., Zou,C.H., and Fu,C.H. (2004). Combination of low-dose cisplatin and recombinant xenogeneic endoglin as a vaccine induces synergistic antitumor activities. Int J Cancer 112, 701-706.
Theys,J., Landuyt,W., Nuyts,S., Van Mellaert,L., Bosmans,E., Rijnders,A., Van Den,B.W., van Oosterom,A., Anne,J., and Lambin,P. (2001). Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol. Med. Microbiol. 30, 37-41.
Thiele,E.H., Arison,R.N., and Boxer,G.E. (1964). Oncolysis by Clostridia. IV. effect of nonpathogenic Clostridial spores in normal and pathological tissues. Cancer Res. 24, 234-238.
Toso,J.F., Gill,V.J., Hwu,P., Marincola,F.M., Restifo,N.P., Schwartzentruber,D.J., Sherry,R.M., Topalian,S.L., Yang,J.C., Stock,F., Freezer,L.J., Morton,K.E., Seipp,C., Haworth,L., Mavroukakis,S., White,D., MacDonald,S., Mao,J., Sznol,M., and Rosenberg,S.A. (2002). Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142-152.
Urashima,M., Suzuki,H., Yuza,Y., Akiyama,M., Ohno,N., and Eto,Y. (2000). An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood 95, 1258-1263.
Vaupel,P., Kallinowski,F., and Okunieff,P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449-6465.
Volpert,O.V., Lawler,J., and Bouck,N.P. (1998). A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc. Natl. Acad. Sci. U. S. A 95, 6343-6348.
Weidner,N., Semple,J.P., Welch,W.R., and Folkman,J. (1991). Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1-8.
Yang,K.D., Stone,R.M., Lee,C.S., Chao,T.Y., Cheng,S.N., and Shaio,M.F. (1992). Effect of picibanil (OK432) on neutrophil-mediated antitumor activity: implication of monocyte-derived neutrophil-activating factors. Cancer Immunol. Immunother. 35, 277-282.
Yazawa,K., Fujimori,M., Nakamura,T., Sasaki,T., Amano,J., Kano,Y., and Taniguchi,S. (2001). Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res. Treat. 66, 165-170.
Ye,X., Rivera,V.M., Zoltick,P., Cerasoli,F., Jr., Schnell,M.A., Gao,G., Hughes,J.V., Gilman,M., and Wilson,J.M. (1999). Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 283, 88-91.
Yu,Y.A., Shabahang,S., Timiryasova,T.M., Zhang,Q., Beltz,R., Gentschev,I., Goebel,W., and Szalay,A.A. (2004). Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat. Biotechnol. 22, 313-320.
Zagzag,D., Zhong,H., Scalzitti,J.M., Laughner,E., Simons,J.W., and Semenza,G.L. (2000). Expression of hypoxia-inducible factor 1α in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88, 2606-2618.