| 研究生: |
安杰莉 Anjali Yadav |
|---|---|
| 論文名稱: |
探討苯基丁酸鈉與高濃度血小板生長因子於坐骨神經截斷之大鼠中抗發炎與促進神經再生效果之機轉 Studying the mechanisms underlying anti-inflammation and nerve regeneration by sodium phenylbutyrate and platelet-rich growth factors in rat model of sciatic nerve transection |
| 指導教授: |
吳佳慶
Wu, Chia-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 跨領域神經科學國際博士學位學程 TIGP on The Interdisciplinary Neuroscience |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 外文關鍵詞: | Inflammation, Schwann cell, HDAC inhibitor, Transection nerve injury, Regeneration, LPS, Myelination, NFκB-p65, Platelet |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
再生微環境是周圍神經損傷後神經功能能否成功恢復的關鍵。神經損傷後,許旺細胞 (Schwann cells, SCs) 處於一去分化過程,以利支持神經修復過程中各個階段的發展。這種轉變是透過 SCs 中,組蛋白脫乙醯酶 (histone deacetylases, HDAC) 的表觀遺傳調控促進的。活化的 SCs 藉由在損傷部位釋放炎性細胞因子和生長因子,來塑造一個,以利遠端軸突退化以及近端軸突形成一朝向去神經支配目標器官之生長錐的微環境。而由 SCs 介導的炎症時間或時序的變化,皆會影響修復和再生相關的後期過程。因此,在我們的研究中,我們研究了 SCs 中,是何種HDAC 控制炎症細胞因子,進而為周圍神經再生提供有利微環境的調節過程。我們在體外 RT4 SC 炎症模型和體內坐骨神經橫斷損傷模型中,使用 HDAC 抑制劑,苯丁酸鈉 (sodium phenylbutyrate, PBA),來探究 HDAC 抑制對炎症擴展與神經再生潛力的影響。我們發現,使用 PBA 治療得縮短炎症時程,並有利於神經橫斷損傷後,軸突與髓鞘再生。於體外模式中,PBA 亦透過抑制 SCs 中 NFκB-p65 和 HDAC3 的轉錄激活來調節促炎細胞因子的表達。此外,由於內源性生長因子的濃度不足以為神經再生提供營養支持,因此我們在坐骨神經損傷部位加入了自體血小板濃縮生長因子(autologous platelet rich growth factors, PRGF),來提升神經再生過程的速度。PRGF的應用在體內促進血管生成、軸突再生、髓鞘再生和神經再支配以及控制體外炎性細胞因子的表現量方面皆顯示出益處。總結,免疫反應和生長因子水平的優化為受傷後的周圍神經再生提供了一種優越的治療方法。
A regenerative niche is the key to successful functional recovery after a peripheral nerve injury. Schwann cells (SCs) undergo a dedifferentiation process necessary to support various stages of nerve repair after a nerve injury. This transition is facilitated through epigenetic regulation by histone deacetylases (HDACs) in SCs. The activated SCs release inflammatory cytokines as well as growth factors at the injury site to create a permissive microenvironment for the distal axons to degenerate and proximal axons to form a growth cone towards the denervated target organ. However, changes in either the timing or duration of inflammation mediated by SCs can affect later processes associated with repair and regeneration. Therefore, in our study we have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration. We employed the HDAC inhibitor sodium phenylbutyrate (PBA) in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the suppression of extended inflammation and its effect on the regenerative potential of nerves. Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro. Additionally, as the concentration of endogenous growth factors are not enough to provide the trophic support for nerve regeneration hence, we incorporated the autologous platelet rich growth factors (PRGF) at the injury site in sciatic nerve to enhance the speed of nerve regeneration processes. PRGF application has shown beneficial roles in promoting angiogenesis, axonal regeneration, remyelination, and reinnervation in vivo and controlling the levels of inflammatory cytokines in vitro. Taken together, optimization of the immune response and levels of growth factors provides a superior therapy for peripheral nerve regeneration post-injury.
1. David S, Aguayo AJ: Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981, 214:931-933.
2. Coleman MP, Freeman MR: Wallerian degeneration, wlds, and nmnat. Annual review of neuroscience 2010, 33:245-267.
3. Verdú E, Ceballos D, Vilches JJ, Navarro X: Influence of aging on peripheral nerve function and regeneration. Journal of the Peripheral Nervous System 2000, 5:191-208.
4. Stoll G, Griffin J, Li CY, Trapp B: Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. Journal of neurocytology 1989, 18:671-683.
5. Mirsky R, Jessen KR: Schwann cell development, differentiation and myelination. Current opinion in neurobiology 1996, 6:89-96.
6. Gaudet AD, Popovich PG, Ramer MS: Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. Journal of neuroinflammation 2011, 8:110.
7. Torigoe K, Tanaka H-F, Takahashi A, Awaya A, Hashimoto K: Basic behavior of migratory Schwann cells in peripheral nerve regeneration. Experimental neurology 1996, 137:301-308.
8. Rotshenker S: Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 2011, 8:109.
9. Liefner M, Siebert H, Sachse T, Michel U, Kollias G, Bruck W: The role of TNF-alpha during Wallerian degeneration. J Neuroimmunol 2000, 108:147-152.
10. Chen G, Luo X, Wang W, Wang Y, Zhu F, Wang W: Interleukin-1beta Promotes Schwann Cells De-Differentiation in Wallerian Degeneration via the c-JUN/AP-1 Pathway. Front Cell Neurosci 2019, 13:304.
11. Hirata K, Kawabuchi M: Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration. Microsc Res Tech 2002, 57:541-547.
12. Stoll G, Griffin JW, Li CY, Trapp BD: Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol 1989, 18:671-683.
13. Shamash S, Reichert F, Rotshenker S: The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 2002, 22:3052-3060.
14. Kato K, Liu H, Kikuchi S, Myers RR, Shubayev VI: Immediate anti-tumor necrosis factor-alpha (etanercept) therapy enhances axonal regeneration after sciatic nerve crush. J Neurosci Res 2010, 88:360-368.
15. Li J, Wei GH, Huang H, Lan YP, Liu B, Liu H, Zhang W, Zuo YX: Nerve injury-related autoimmunity activation leads to chronic inflammation and chronic neuropathic pain. Anesthesiology 2013, 118:416-429.
16. Kato N, Nemoto K, Kawaguchi M, Amako M, Arino H, Fujikawa K: Influence of chronic inflammation in peripheral target tissue on recovery of crushed nerve injury. J Orthop Sci 2001, 6:419-423.
17. Buttner R, Schulz A, Reuter M, Akula AK, Mindos T, Carlstedt A, Riecken LB, Baader SL, Bauer R, Morrison H: Inflammaging impairs peripheral nerve maintenance and regeneration. Aging Cell 2018, 17:e12833.
18. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004, 101:16659-16664.
19. Yao YL, Yang WM: Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J Biomed Biotechnol 2011, 2011:146493.
20. Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH: Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery. Cell Rep 2015, 13:1444-1455.
21. Glozak MA, Sengupta N, Zhang X, Seto E: Acetylation and deacetylation of non-histone proteins. Gene 2005, 363:15-23.
22. Wu LM, Wang J, Conidi A, Zhao C, Wang H, Ford Z, Zhang L, Zweier C, Ayee BG, Maurel P, et al: Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nat Neurosci 2016, 19:1060-1072.
23. Brugger V, Duman M, Bochud M, Munger E, Heller M, Ruff S, Jacob C: Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat Commun 2017, 8:14272.
24. He X, Zhang L, Queme LF, Liu X, Lu A, Waclaw RR, Dong X, Zhou W, Kidd G, Yoon SO, et al: A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 2018, 24:338-351.
25. Rosenberg LH, Cattin AL, Fontana X, Harford-Wright E, Burden JJ, White IJ, Smith JG, Napoli I, Quereda V, Policarpi C, et al: HDAC3 Regulates the Transition to the Homeostatic Myelinating Schwann Cell State. Cell Rep 2018, 25:2755-2765 e2755.
26. Hood B, Levene HB, Levi AD: Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects. Neurosurg Focus 2009, 26:E4.
27. Shi X, Zheng C, Li C, Hou K, Wang X, Yang Z, Liu C, Liu Y, Che X, Qu X: 4-Phenybutyric acid promotes gastric cancer cell migration via histone deacetylase inhibition-mediated HER3/HER4 up-regulation. Cell Biol Int 2018, 42:53-62.
28. Reddy SS, Shruthi K, Joy D, Reddy GB: 4-PBA prevents diabetic muscle atrophy in rats by modulating ER stress response and ubiquitin-proteasome system. Chem Biol Interact 2019, 306:70-77.
29. Chen CH, Shih PC, Lin HY, Wang PK, Pan PT, Chuang CW, Kao MC: 4-Phenylbutyric acid protects against vasculitic peripheral neuropathy induced by ischaemia-reperfusion through attenuating endoplasmic reticulum stress. Inflammopharmacology 2019, 27:713-722.
30. Cousens LS, Gallwitz D, Alberts BM: Different accessibilities in chromatin to histone acetylase. J Biol Chem 1979, 254:1716-1723.
31. Park JS, Lee EJ, Lee JC, Kim WK, Kim HS: Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol 2007, 7:70-77.
32. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A: Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004, 141:874-880.
33. Kukkar A, Singh N, Jaggi AS: Attenuation of neuropathic pain by sodium butyrate in an experimental model of chronic constriction injury in rats. J Formos Med Assoc 2014, 113:921-928.
34. Thakur KK, Saini J, Mahajan K, Singh D, Jayswal DP, Mishra S, Bishayee A, Sethi G, Kunnumakkara AB: Therapeutic implications of toll-like receptors in peripheral neuropathic pain. Pharmacol Res 2017, 115:224-232.
35. Abdollahi-Roodsaz S, Joosten LA, Roelofs MF, Radstake TR, Matera G, Popa C, van der Meer JW, Netea MG, van den Berg WB: Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum 2007, 56:2957-2967.
36. De Paola M, Sestito SE, Mariani A, Memo C, Fanelli R, Freschi M, Bendotti C, Calabrese V, Peri F: Synthetic and natural small molecule TLR4 antagonists inhibit motoneuron death in cultures from ALS mouse model. Pharmacol Res 2016, 103:180-187.
37. Karanth S, Yang G, Yeh J, Richardson PM: Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Exp Neurol 2006, 202:161-166.
38. Goethals S, Ydens E, Timmerman V, Janssens S: Toll-like receptor expression in the peripheral nerve. Glia 2010, 58:1701-1709.
39. Tanaka K, Webster HD: Myelinated fiber regeneration after crush injury is retarded in sciatic nerves of aging mice. J Comp Neurol 1991, 308:180-187.
40. Heijnen H, van der Sluijs P: Platelet secretory behaviour: as diverse as the granules ... or not? J Thromb Haemost 2015, 13:2141-2151.
41. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR: Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998, 85:638-646.
42. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE: Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone 2004, 34:665-671.
43. Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M: The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 2006, 17:212-219.
44. Anitua E, Pascual C, Perez-Gonzalez R, Orive G, Carro E: Intranasal PRGF-Endoret enhances neuronal survival and attenuates NF-kappaB-dependent inflammation process in a mouse model of Parkinson's disease. J Control Release 2015, 203:170-180.
45. Anitua E, Zalduendo MM, Prado R, Alkhraisat MH, Orive G: Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion. J Biomed Mater Res A 2015, 103:1011-1020.
46. Anitua E, Sanchez M, Orive G, Andia I: The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 2007, 28:4551-4560.
47. Nishiyama K, Okudera T, Watanabe T, Isobe K, Suzuki M, Masuki H, Okudera H, Uematsu K, Nakata K, Kawase T: Basic characteristics of plasma rich in growth factors (PRGF): blood cell components and biological effects. Clin Exp Dent Res 2016, 2:96-103.
48. Anitua E, Pino A, Aspe L, Martinez M, Garcia A, Goni F, Troya M: Anti-inflammatory effect of different PRGF formulations on cutaneous surface. J Tissue Viability 2021, 30:183-189.
49. Namgung U: The role of Schwann cell-axon interaction in peripheral nerve regeneration. Cells Tissues Organs 2014, 200:6-12.
50. <Dental pulp-derived stem cells can counterbalance peripheral nerve injury-induced oxidative stress and supraspinal neuro-inflammation in rat brain .pdf>.
51. Lu Y, Li R, Zhu J, Wu Y, Li D, Dong L, Li Y, Wen X, Yu F, Zhang H, et al: Fibroblast growth factor 21 facilitates peripheral nerve regeneration through suppressing oxidative damage and autophagic cell death. J Cell Mol Med 2019, 23:497-511.
52. Dong L, Li R, Li D, Wang B, Lu Y, Li P, Yu F, Jin Y, Ni X, Wu Y, et al: FGF10 Enhances Peripheral Nerve Regeneration via the Preactivation of the PI3K/Akt Signaling-Mediated Antioxidant Response. Front Pharmacol 2019, 10:1224.
53. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT: Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 2009, 32:591-601.
54. Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, Pahan K: Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease. PLoS One 2012, 7:e38113.
55. Sanchez M, Garate A, Delgado D, Padilla S: Correction: Platelet-rich plasma, an adjuvant biological therapy to assist peripheral nerve repair. Neural Regen Res 2017, 12:338.
56. Lichtenfels M, Colome L, Sebben AD, Braga-Silva J: Effect of Platelet Rich Plasma and Platelet Rich Fibrin on sciatic nerve regeneration in a rat model. Microsurgery 2013, 33:383-390.
57. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C: M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 2015, 15:577.
58. Huang TC, Wu HL, Chen SH, Wang YT, Wu CC: Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. J Neuroinflammation 2020, 17:240.
59. Huang CW, Lu SY, Huang TC, Huang BM, Sun HS, Yang SH, Chuang JI, Hsueh YY, Wu YT, Wu CC: FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics 2020, 10:2817-2831.
60. Fang SY, Huang CW, Huang TC, Yadav A, Chiu JJ, Wu CC: Reduction in MicroRNA-4488 Expression Induces NFkappaB Translocation in Venous Endothelial Cells Under Arterial Flow. Cardiovasc Drugs Ther 2021, 35:61-71.
61. Liou JY, Wu CC, Chen BR, Yen LB, Wu KK: Nonsteroidal anti-inflammatory drugs induced endothelial apoptosis by perturbing peroxisome proliferator-activated receptor-delta transcriptional pathway. Mol Pharmacol 2008, 74:1399-1406.
62. Wu CC, Li YS, Haga JH, Kaunas R, Chiu JJ, Su FC, Usami S, Chien S: Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc Natl Acad Sci U S A 2007, 104:1254-1259.
63. Francel PC, Francel TJ, Mackinnon SE, Hertl C: Enhancing nerve regeneration across a silicone tube conduit by using interposed short-segment nerve grafts. J Neurosurg 1997, 87:887-892.
64. Hsueh YY, Chang YJ, Huang TC, Fan SC, Wang DH, Chen JJ, Wu CC, Lin SC: Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials 2014, 35:2234-2244.
65. Huang CW, Huang CC, Chen YL, Fan SC, Hsueh YY, Ho CJ, Wu CC: Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling. Biomed Res Int 2015, 2015:862485.
66. Liu C, Tsai AL, Li PC, Huang CW, Wu CC: Endothelial differentiation of bone marrow mesenchyme stem cells applicable to hypoxia and increased migration through Akt and NFkappaB signals. Stem Cell Res Ther 2017, 8:29.
67. Crowe AR, Yue W: Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc 2019, 9.
68. Iwamoto M, Nakamura Y, Takemura M, Hisaoka-Nakashima K, Morioka N: TLR4-TAK1-p38 MAPK pathway and HDAC6 regulate the expression of sigma-1 receptors in rat primary cultured microglia. J Pharmacol Sci 2020, 144:23-29.
69. Liu T, Zhang L, Joo D, Sun SC: NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2017, 2.
70. Choi S, Choi HJ, Cheong Y, Lim YJ, Park HK: Internal-specific morphological analysis of sciatic nerve fibers in a radiofrequency-induced animal neuropathic pain model. PLoS One 2013, 8:e73913.
71. Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR: Erythropoietin reduces Schwann cell TNF-alpha, Wallerian degeneration and pain-related behaviors after peripheral nerve injury. Eur J Neurosci 2006, 23:617-626.
72. Li X, Wang S, Yang X, Chu H: miR1423p targets AC9 to regulate sciatic nerve injuryinduced neuropathic pain by regulating the cAMP/AMPK signalling pathway. Int J Mol Med 2021, 47:561-572.
73. Kato N, Matsumoto M, Kogawa M, Atkins GJ, Findlay DM, Fujikawa T, Oda H, Ogata M: Critical role of p38 MAPK for regeneration of the sciatic nerve following crush injury in vivo. J Neuroinflammation 2013, 10:1.
74. Kiefer R, Kieseier BC, Stoll G, Hartung HP: The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 2001, 64:109-127.
75. Bollaerts I, Van Houcke J, Andries L, De Groef L, Moons L: Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System. Mediators Inflamm 2017, 2017:9478542.
76. Yong VW, Rivest S: Taking advantage of the systemic immune system to cure brain diseases. Neuron 2009, 64:55-60.
77. Sawada T, Sano M, Omura T, Omura K, Hasegawa T, Funahashi S, Nagano A: Spatiotemporal quantification of tumor necrosis factor-alpha and interleukin-10 after crush injury in rat sciatic nerve utilizing immunohistochemistry. Neurosci Lett 2007, 417:55-60.
78. Omura T, Omura K, Sano M, Sawada T, Hasegawa T, Nagano A: Spatiotemporal quantification of recruit and resident macrophages after crush nerve injury utilizing immunohistochemistry. Brain Res 2005, 1057:29-36.
79. Taskinen HS, Roytta M: The dynamics of macrophage recruitment after nerve transection. Acta Neuropathol 1997, 93:252-259.
80. Ydens E, Cauwels A, Asselbergh B, Goethals S, Peeraer L, Lornet G, Almeida-Souza L, Van Ginderachter JA, Timmerman V, Janssens S: Acute injury in the peripheral nervous system triggers an alternative macrophage response. J Neuroinflammation 2012, 9:176.
81. Myers RR, Sekiguchi Y, Kikuchi S, Scott B, Medicherla S, Protter A, Campana WM: Inhibition of p38 MAP kinase activity enhances axonal regeneration. Experimental Neurology 2003, 184:606-614.
82. McCully ML, Kouzeli A, Moser B: Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends Immunol 2018, 39:734-747.
83. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM: Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007, 321:892-901.
84. Tang YH, Yue ZS, Zheng WJ, Shen HF, Zeng LR, Hu ZQ, Xiong ZF: 4-Phenylbutyric acid presents therapeutic effect on osteoarthritis via inhibiting cell apoptosis and inflammatory response induced by endoplasmic reticulum stress. Biotechnol Appl Biochem 2018, 65:540-546.
85. Zeng M, Sang W, Chen S, Chen R, Zhang H, Xue F, Li Z, Liu Y, Gong Y, Zhang H, Kong X: 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models. Toxicol Lett 2017, 271:26-37.
86. Lim EF, Hoghooghi V, Hagen KM, Kapoor K, Frederick A, Finlay TM, Ousman SS: Presence and activation of pro-inflammatory macrophages are associated with CRYAB expression in vitro and after peripheral nerve injury. J Neuroinflammation 2021, 18:82.
87. Gonzalez-Jaramillo V, Portilla-Fernandez E, Glisic M, Voortman T, Ghanbari M, Bramer W, Chowdhury R, Nijsten T, Dehghan A, Franco OH, Nano J: Epigenetics and Inflammatory Markers: A Systematic Review of the Current Evidence. Int J Inflam 2019, 2019:6273680.
88. Leoni F, Fossati G, Lewis EC, Lee JK, Porro G, Pagani P, Modena D, Moras ML, Pozzi P, Reznikov LL, et al: The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 2005, 11:1-15.
89. Kawabata T, Nishida K, Takasugi K, Ogawa H, Sada K, Kadota Y, Inagaki J, Hirohata S, Ninomiya Y, Makino H: Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis. Arthritis Res Ther 2010, 12:R133.
90. Chung YL, Lee MY, Wang AJ, Yao LF: A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther 2003, 8:707-717.
91. Blanchard F, Chipoy C: Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 2005, 10:197-204.
92. Wu F, Xing D, Peng Z, Rao T: Enhanced rat sciatic nerve regeneration through silicon tubes implanted with valproic acid. J Reconstr Microsurg 2008, 24:267-276.
93. Rao T, Wu F, Xing D, Peng Z, Ren D, Feng W, Chen Y, Zhao Z, Wang H, Wang J, et al: Effects of valproic Acid on axonal regeneration and recovery of motor function after peripheral nerve injury in the rat. Arch Bone Jt Surg 2014, 2:17-24.
94. Pan HC, Cheng FC, Chen CJ, Lai SZ, Liu MJ, Chang MH, Wang YC, Yang DY, Ho SP: Dietary supplement with fermented soybeans, natto, improved the neurobehavioral deficits after sciatic nerve injury in rats. Neurol Res 2009, 31:441-452.
95. Wu SC, Rau CS, Lu TH, Wu CJ, Wu YC, Tzeng SL, Chen YC, Hsieh CH: Knockout of TLR4 and TLR2 impair the nerve regeneration by delayed demyelination but not remyelination. J Biomed Sci 2013, 20:62.
96. Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, Rivest S, Lacroix S: Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 2007, 27:12565-12576.
97. Sauer RS, Hackel D, Morschel L, Sahlbach H, Wang Y, Mousa SA, Roewer N, Brack A, Rittner HL: Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation. Mol Pain 2014, 10:10.
98. Chen X, Barozzi I, Termanini A, Prosperini E, Recchiuti A, Dalli J, Mietton F, Matteoli G, Hiebert S, Natoli G: Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 2012, 109:E2865-2874.
99. Leus NG, van der Wouden PE, van den Bosch T, Hooghiemstra WTR, Ourailidou ME, Kistemaker LE, Bischoff R, Gosens R, Haisma HJ, Dekker FJ: HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-kappaB p65 transcriptional activity. Biochem Pharmacol 2016, 108:58-74.
100. Ma J, Luo T, Zeng Z, Fu H, Asano Y, Liao Y, Minamino T, Kitakaze M: Histone Deacetylase Inhibitor Phenylbutyrate Exaggerates Heart Failure in Pressure Overloaded Mice independently of HDAC inhibition. Sci Rep 2016, 6:34036.
101. Ji MH, Li GM, Jia M, Zhu SH, Gao DP, Fan YX, Wu J, Yang JJ: Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice. Inflammation 2013, 36:1453-1459.
102. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S: Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Materials 2017, 9:e435-e435.
103. Brandi ML, Collin-Osdoby P: Vascular biology and the skeleton. J Bone Miner Res 2006, 21:183-192.
104. Fei Y, Gronowicz G, Hurley MM: Fibroblast growth factor-2, bone homeostasis and fracture repair. Curr Pharm Des 2013, 19:3354-3363.
105. Martino MM, Briquez PS, Maruyama K, Hubbell JA: Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Adv Drug Deliv Rev 2015, 94:41-52.
106. Gupta R, Steward O: Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells. J Comp Neurol 2003, 461:174-186.
107. Gupta R, Gray M, Chao T, Bear D, Modafferi E, Mozaffar T: Schwann cells upregulate vascular endothelial growth factor secondary to chronic nerve compression injury. Muscle Nerve 2005, 31:452-460.