簡易檢索 / 詳目顯示

研究生: 陳文宏
Chen,Wen-Hung
論文名稱: 毫/微米流道上下疊置雙層熱沉之共軛熱散逸特性與效能之實驗研究
Experimental study on conjugate heat dissipation characteristics and efficacy of a mini-and micro-channel stacked double-layer heat sink
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 疊置雙層流道熱沉氧化鋁-水奈米流體
外文關鍵詞: double-layer heat sink, Alumina–water based nanofluid
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗量測的方式,探討將水以及0.5%體積百分濃度之氧化鋁奈米流體通入毫/微米流道疊置雙層熱沉之熱傳増益與壓降。毫/微米流道疊置雙層熱沉是在一微米流道熱沉上再疊置一毫米流道熱沉所組成,毫米流道及微米流道皆以無氧銅為材料進行線切割加工而成,流道總寬度皆為16.8mm,總長度為50mm,其中毫米流道熱沉有8條長度50mm、寬度0.7mm、高度2.8mm的矩形流道,水力直徑為1.12mm,微米流道熱沉有16條長度50mm、寬度0.4mm、高度1.4mm的矩形流道,水力直徑為0.62mm。實驗以固定入口溫度40℃以及加熱面平均壁溫為實驗條件,並且在不同加熱面平均壁溫下,會有三種體積流量的工作流體通入毫/微米流道疊置雙層熱沉,在加熱面平均壁溫45℃時,體積流量分別為271.63(cm^3/min)、407.45(cm^3/min)和543.26(cm^3/min),於加熱面平均壁溫50℃,體積流量分別為259.95(cm^3/min) 、389.93(cm^3/min) 和519.91(cm^3/min),由實驗結果得知在高加熱面平均壁溫且高體積流量的條件下,毫/微米流道疊置雙層熱沉通入(奈米流體/純水)之有效壓降會有11%的增幅。在高加熱面平均壁溫且高流量比的條件下,毫米流道不論通入奈米流體或是純水都能夠為實驗模組提供較好的散熱幫助。

    In the present study, the heat transfer effectiveness, and pressure drop of a mini-and micro-channel stacked double-layer heat sink are discussed, in which water and volumetric concentration of 0.5% alumina–water based nanofluid are coolants. The material of microchannel and minichannel heat sink is oxygen-free copper. Both channels are made by electrical discharge machining. The testing section includes minichannel heat sink which has 16 rectangular channels and a microchannel heat sink with 8 rectangular channels. The dimension of microchannel and minichannel heat sink is 50mm 0.4mm 1.4mm and 50mm 0.7mm 2.8mm, respectively. The hydraulic diameter of microchannel and minichannel is 0.62mm and 1.12mm, respectively. The experiment is under a fixed inlet temperature of 40 °C as well as two different average wall temperatures of the heating surface. Three volumetric flow rates of working fluids passing into the mini-and micro-channel stacked double-layer heat sink. The volumetric flow rate includes 271.63(cm^3/min), 407.45(cm^3/min), and 543.26(cm^3/min) under the average wall temperature of the heating surface is 45°C. When the average wall temperature of the heating surface is up to 50°C, the setting of the volumetric flow rate changes to 259.95(cm^3/min), 389.93(cm^3/min), and 519.91(cm^3/min), respectively.
    The results of the experiment can be seen that when nanofluid and water are filled with minichannl and microchannel, respectively, the pressure drop increases 11% under a high average wall temperature of the heating surface. Whether the working fluid is nanofluid or water, the minichannel can provide better heat dissipation for the experimental module under a high average wall temperature of the heating surface and a high flow rate ratio.

    摘要 I 致謝 XXI 目錄 XXII 表目錄 XXV 圖目錄 XXVI 符號說明 XXXI 第一章、緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 9 1-4 論文架構 10 第二章、實驗方法與數據處理 12 2-1 實驗模型 12 2-2 實驗設備 20 2-3 實驗迴路 20 2-3-1 實驗迴路前置作業與維護 21 2-4 實驗方法 23 2-4-1 冷流實驗之步驟 23 2-4-2 熱流實驗之步驟 23 2-5 實驗之加熱條件 24 2-6 奈米流體之調配與熱物性量測 26 2-6-1 奈米流體之調配 26 2-6-2 奈米流體之熱物性量測 26 2-7數據處理 34 2-7-1 毫/微米流道疊置雙層熱沉通入純水之相關參數定義 34 2-8 誤差分析 39 第三章、結果與討論 44 3-1 摩擦因子與壓降 44 3-2 流體帶走有效熱量 45 3-3 毫米流道流體載熱占總載熱之比值 48 3-4 入口溫度定義之平均熱傳係數 49 3-5 平均加熱面壁溫熱阻 49 3-6 性能因子 50 第四章、結論與未來方向 75 4-1結論 75 4-2未來方向 75 參考文獻 77 附錄 79

    [1] D. B. Tuckerman and R. F. W. Pease, "High-performance heat sinking for VLSI," IEEE Electron Device Letters, vol. 2, no. 5, pp. 126-129, 1981.
    [2] W. Qu and I. Mudawar, "Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink," International Journal of Heat and Mass Transfer, vol. 45, no. 12, pp. 2549-2565, 2002/06/01/ 2002.
    [3] P.-S. Lee, S. V. Garimella, and D. Liu, "Investigation of heat transfer in rectangular microchannels," International Journal of Heat and Mass Transfer, vol. 48, no. 9, pp. 1688-1704, 2005/04/01/ 2005.
    [4] P. Gunnasegaran, H. A. Mohammed, N. H. Shuaib, and R. Saidur, "The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes," International Communications in Heat and Mass Transfer, vol. 37, no. 8, pp. 1078-1086, 2010/10/01/ 2010.
    [5] H. A. Mohammed, P. Gunnasegaran, and N. H. Shuaib, "Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink," International Communications in Heat and Mass Transfer, vol. 38, no. 4, pp. 474-480, 2011/04/01/ 2011.
    [6] V. Leela Vinodhan and K. S. Rajan, "Fine-tuning width and aspect ratio of an improved microchannel heat sink for energy-efficient thermal management," Energy Conversion and Management, vol. 105, pp. 986-994, 2015/11/15/ 2015.
    [7] S. U. S. Choi and J. A. Eastman, "Enhancing thermal conductivity of fluids with nanoparticles," United States, 1995-10-01 1995.
    [8] T.-C. Hung, W.-M. Yan, X.-D. Wang, and C.-Y. Chang, "Heat transfer enhancement in microchannel heat sinks using nanofluids," International Journal of Heat and Mass Transfer, vol. 55, no. 9, pp. 2559-2570, 2012/04/01/ 2012.
    [9] C. J. Ho, L. C. Wei, and Z. W. Li, "An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid," Applied Thermal Engineering, vol. 30, no. 2, pp. 96-103, 2010/02/01/ 2010.
    [10] 鍾明峰, "氧化鋁/水奈米流體流經具頂板間隙之毫米矩形熱沉對流熱散逸特性研究," 碩士論文, 機械工程學系, 國立成功大學, 台南市, 2018.
    [11] J. Wu, J. Zhao, J. Lei, and B. Liu, "Effectiveness of nanofluid on improving the performance of microchannel heat sink," Applied Thermal Engineering, vol. 101, pp. 402-412, 2016/05/25/ 2016.
    [12] S. Kuravi, K. M. Kota, J. Du, and L. C. Chow, "Numerical Investigation of Flow and Heat Transfer Performance of Nano-Encapsulated Phase Change Material Slurry in Microchannels," Journal of Heat Transfer, vol. 131, no. 6, 2009.
    [13] 王景宏, "相變化材料次微米膠囊製備與相關物性之研究," 碩士論文, 機械工程學系, 國立成功大學, 台南市, 2010.
    [14] 鄭偉成, "毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對流特性研究," 碩士論文, 機械工程學系, 國立成功大學, 台南市, 2010.
    [15] 徐紹騰, "平行/漸擴毫米流道熱沉內奈米相變化乳液強制對流熱散逸特性之實驗研究," 碩士論文, 機械工程學系, 國立成功大學, 台南市, 2014.
    [16] A. B. S. Alquaity, S. A. Al-Dini, E. N. Wang, and B. S. Yilbas, "Numerical investigation of liquid flow with phase change nanoparticles in microchannels," International Journal of Heat and Fluid Flow, vol. 38, pp. 159-167, 2012/12/01/ 2012.
    [17] K. Vafai and L. Zhu, "Analysis of two-layered micro-channel heat sink concept in electronic cooling," International Journal of Heat and Mass Transfer, vol. 42, no. 12, pp. 2287-2297, 1999/06/01/ 1999.
    [18] J. M. Wu, J. Y. Zhao, and K. J. Tseng, "Parametric study on the performance of double-layered microchannels heat sink," Energy Conversion and Management, vol. 80, pp. 550-560, 2014/04/01/ 2014.
    [19] G. Xie, Y. Liu, B. Sunden, and W. Zhang, "Computational Study and Optimization of Laminar Heat Transfer and Pressure Loss of Double-Layer Microchannels for Chip Liquid Cooling," Journal of Thermal Science and Engineering Applications, vol. 5, no. 1, 2013.
    [20] K.-C. Wong and M.-L. Ang, "Thermal hydraulic performance of a double-layer microchannel heat sink with channel contraction," International Communications in Heat and Mass Transfer, vol. 81, pp. 269-275, 2017/02/01/ 2017.
    [21] T.-C. Hung, W.-M. Yan, and W.-P. Li, "Analysis of heat transfer characteristics of double-layered microchannel heat sink," International Journal of Heat and Mass Transfer, vol. 55, no. 11, pp. 3090-3099, 2012/05/01/ 2012.
    [22] T.-C. Hung and W.-M. Yan, "Enhancement of thermal performance in double-layered microchannel heat sink with nanofluids," International Journal of Heat and Mass Transfer, vol. 55, no. 11, pp. 3225-3238, 2012/05/01/ 2012.
    [23] 林湘明, "調控水/奈米流體組合分流量於一毫/微米流道疊置雙層熱沉內強制對流熱散逸效能研究," 碩士論文, 機械工程學系, 國立成功大學, 台南市, 2019.
    [24] 彭建凱, "毫/微米流道疊置雙層熱沉內分流水/氧化鋁奈米流體之強制對流熱散逸效能實驗研究," 碩士論文, 機械工程學系, 國立成功大學, 台南市, 2020.
    [25] 潘霽, "毫/微米流道疊置雙層熱沉內水/相變化奈米乳液之強制對流熱散逸效能實驗研究," 碩士論文, 機械工程學系, 國立成功大學, 台南市, 2021.
    [26] C. O. Popiel and J. Wojtkowiak, "Simple Formulas for Thermophysical Properties of Liquid Water for Heat Transfer Calculations (from 0°C to 150°C)," Heat Transfer Engineering, vol. 19, no. 3, pp. 87-101, 1998/01/01 1998.

    無法下載圖示 校內:2027-08-04公開
    校外:2027-08-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE