| 研究生: |
蘇耕毅 Su, Keng-Yi |
|---|---|
| 論文名稱: |
利用硫化製程形成銅銦鋁二硫並藉由硫化鋅擴散形成同質pn接面二極體之研究 A Study of Formation pn-Homojunction Diode by Diffusion of ZnS into CuIn1-xAlxS2 Film via Sulfurization |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 銅銦鋁二硒 、銅銦鋁二硫 、同質pn接面二極體 |
| 外文關鍵詞: | CuInAlSe2, CuInAlS2, pn-homojunction diode |
| 相關次數: | 點閱:54 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用濺鍍的方式製作銅銦鋁先驅層,先驅層的堆疊方式及成份比會影響表面形貌是否能夠形成大晶粒,在實驗中,我已先後嘗試三種不同的製作方法,最後採用先濺鍍鋁,再共濺鍍銅銦的製備方法,以此法形成的先驅層能夠在接下來的高溫硒化形成具有大晶粒的表面形貌,完成硒化製程後,再經由高溫硫化的方式,形成銅銦鋁二硫,此為元件結構中P型區的材料。實驗中可發現,硫不僅容易取代硒,而且硫化製程又不會破壞原有的表面形貌。銅銦鋁二硒的能隙範圍從1 eV到2.7 eV,而銅銦鋁二硫的能隙範圍擴大到1.5 eV到3.5 eV,擴大能隙的範圍是硫化製程重要的目的之一,藉由調整鋁的含量多寡,可以有更大的範圍去改變能隙大小,進而改變發光波段。
接著利用化學水浴法製備硫化鋅層,並退火讓鋅原子擴散進入CuInAlS2表面,使表面轉換為N型CuInAlS2,以形成同質P-N接面,並利用I-V量測確認二極體曲線的產生。最後濺鍍氧化鋁鋅及銀電極,完成同質pn接面二極體之製作。在濺鍍先驅層、化學水浴法製備硫化鋅及濺鍍掺鋁之氧化鋅時,會使用金屬光罩(shadow mask)將元件規範成圓形區域,此目的在於讓電流的分佈更加均勻。
本實驗並以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X光繞射儀(XRD)、I-V量測及螢光光譜儀(PL)等分析儀器,量測薄膜的表面形貌、成分比例、結構特性、二極體特性曲線及發光波段等資料。
最後,由電壓-電流特性曲線可看出,此元件具有二極體之特性,並在無光害的環境下,進行發光測試可看到光的產生。
In this thesis, the CuInAl metallic precursors were deposited by sputtering. The composition ratio of the precursors and how the layers were stacked will influence the grain size and morphology of the post-selenized film. In my experiment, three different stacking methods were tried to deposit the precursors. Among them, sputtering Al first and then co-sputtering Cu-In is the best to form CuInAlSe2 (CIASe) film with large grain size after a selenization process. The CIASe film can be transformed to a CuIn1-xAlxS2 (CIAS) film after a high temperature sulfurization process. The formulated CIAS film is a p-type material. In the experiments, the sulfur can replace selenium easily and the original morphology can be kept after the sulfurization. The band gap of a CIASe film is from 1 eV to 2.7 eV. The band gap of a CIAS film is from 1.5 eV to 3.5 eV. Sulfurization and composition of aluminum are keys to modulate the CIAS film’s band gap which is suitable for tuning the emitting wavelength of the light for light emitting diode (LED) applications.
After formulated the p-type CIAS film, ZnS film was deposited by chemical bath deposition method, and then Zn atoms diffused into the skin surface of the CIAS film during an annealing process. The skin surface of p-type CIAS can be transformed to a n-type CIAS. Therefore a pn-homojunction can be formed. Finally, the AZO and Ag electrode were deposited by sputtering and a pn-homojunction diode was fabricated.
During the deposition of precursors, ZnS and AZO layer, shadow masks were used for forming a circle active area for the purpose of spreading current evenly.
Scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were used to observe the surface morphology, composition and phase identification of thin films, respectively. Photoluminescence measurement was to identify the bandgap of the CIAS film. Finally, the diodes were tested with forward bias. From the I-V curves, some devices showed obvious diode characteristics and a flash of lighting from the fabricated diodes can be observed without light pollution.
[1] 經濟部能源局, LED照明節能應用技術手冊: 2012.
[2] 郭浩中, 賴芳儀, and 郭守義, LED原理與應用: 五南, 2009, ch. 2; ch.3.
[3] H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907.
[4] G. Destriau, "Experimental studies on the action of an electric field on phosphorescent sulfides," J. chem. Phys, vol. 33, p. 620, 1936.
[5] N. Holonyak and S. Bevacqua, "Coherent (visible) light emission from Ga (As1-xPx) junctions," Applied Physics Letters, vol. 1, pp. 82-83, 1962.
[6] M. G. Craford and W. Groves, "Vapor phase epitaxial materials for LED applications," Proceedings of the IEEE, vol. 61, pp. 862-880, 1973.
[7] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, p. 1687, 1994.
[8] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese journal of applied physics, vol. 34, pp. L797-L799, 1995.
[9] S. M. Sze, Semiconductor devices: physics and technology: John Wiley & Sons, 2008, ch. 2; ch. 4; ch. 5; ch. 9; ch. 10.
[10] 陳隆建, 發光二極體之原理與製程: 全華圖書, 2006, ch. 5; ch. 6; ch. 8.
[11] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering: Wiley, 2011, pp. 571-573.
[12] J. Shay, S. Wagner, and H. Kasper, "Efficient CuInSe/CdS solar cells," Applied Physics Letters, vol. 27, p. 89, 1975.
[13] L. Kazmerski, F. White, and G. Morgan, "Thin‐film CuInSe2/CdS heterojunction solar cells," Applied Physics Letters, vol. 29, pp. 268-270, 1976.
[14] R. Mickelsen and W. Chen, "Polycrystalline thin-film CuInSe2 solar cells," in 16th Photovoltaic Specialists Conference, 1982, pp. 781-785.
[15] J. López-García and C. Guillén, "CuIn1−xAlxSe2 thin films obtained by selenization of evaporated metallic precursor layers," Thin Solid Films, vol. 517, pp. 2240-2243, 2009.
[16] E. Don, R. Hill, and G. Russell, "The structure of CuInSe2 films formed by co-evaporation of the elements," Solar cells, vol. 16, pp. 131-142, 1986.
[17] M. Varela, E. Bertran, M. Manchon, J. Esteve, and J. Morenza, "Optical properties of co-evaporated CuInSe2 thin films," Journal of Physics D: Applied Physics, vol. 19, p. 127, 1986.
[18] T. Pisarkiewicz and H. Jankowski, "Vacuum selenization of metallic multilayers for CIS solar cells," Vacuum, vol. 70, pp. 435-438, 2003.
[19] F. Adurodija, S. Kim, S. Kim, J. Song, K. Yoon, and B. Ahn, "Characterization of co-sputtered Cu-In alloy precursors for CuInSe2 thin films fabrication by close-spaced selenization," Solar energy materials and solar cells, vol. 55, pp. 225-236, 1998.
[20] D. Lincot, J.-F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, and J. Fauvarque, "Chalcopyrite thin film solar cells by electrodeposition," Solar Energy, vol. 77, pp. 725-737, 2004.
[21] S. Grindle, A. Clark, S. Rezaie‐Serej, E. Falconer, J. McNeily, and L. Kazmerski, "Growth of CuInSe2 by molecular beam epitaxy," Journal of Applied Physics, vol. 51, pp. 5464-5469, 1980.
[22] B. Pamplin and R. Feigelson, "Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds," Thin Solid Films, vol. 60, pp. 141-146, 1979.
[23] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, "Blue Light-Emitting Diode Based on ZnO," Japanese journal of applied physics, vol. 44, pp. L643-L645, 2005.
[24] 汪建民, 材料分析: 中國材料科學學會發行, 2001, ch.6; ch.7.
[25] 許樹恩 and 吳泰伯, X光繞射原理與材料結構分析: 民全書局, 1996, pp. 169.
[26] J. Olejníček, L. Flannery, S. Darveau, C. Exstrom, Š. Kment, N. Ianno, and R. Soukup, "CuIn1−xAlxS2 thin films prepared by sulfurization of metallic precursors," Journal of Alloys and Compounds, vol. 509, pp. 10020-10024, 2011.
[27] R. Noufi, R. Axton, C. Herrington, and S. Deb, "Electronic properties versus composition of thin films of CuInSe2," Applied Physics Letters, vol. 45, pp. 668-670, 1984.
[28] S. O. Kasap, Optoelectronics and photonics: Prentice Hall, 2001, ch. 6, sec. 2, pp. 257-259.