簡易檢索 / 詳目顯示

研究生: 蘇耕毅
Su, Keng-Yi
論文名稱: 利用硫化製程形成銅銦鋁二硫並藉由硫化鋅擴散形成同質pn接面二極體之研究
A Study of Formation pn-Homojunction Diode by Diffusion of ZnS into CuIn1-xAlxS2 Film via Sulfurization
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 銅銦鋁二硒銅銦鋁二硫同質pn接面二極體
外文關鍵詞: CuInAlSe2, CuInAlS2, pn-homojunction diode
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用濺鍍的方式製作銅銦鋁先驅層,先驅層的堆疊方式及成份比會影響表面形貌是否能夠形成大晶粒,在實驗中,我已先後嘗試三種不同的製作方法,最後採用先濺鍍鋁,再共濺鍍銅銦的製備方法,以此法形成的先驅層能夠在接下來的高溫硒化形成具有大晶粒的表面形貌,完成硒化製程後,再經由高溫硫化的方式,形成銅銦鋁二硫,此為元件結構中P型區的材料。實驗中可發現,硫不僅容易取代硒,而且硫化製程又不會破壞原有的表面形貌。銅銦鋁二硒的能隙範圍從1 eV到2.7 eV,而銅銦鋁二硫的能隙範圍擴大到1.5 eV到3.5 eV,擴大能隙的範圍是硫化製程重要的目的之一,藉由調整鋁的含量多寡,可以有更大的範圍去改變能隙大小,進而改變發光波段。
    接著利用化學水浴法製備硫化鋅層,並退火讓鋅原子擴散進入CuInAlS2表面,使表面轉換為N型CuInAlS2,以形成同質P-N接面,並利用I-V量測確認二極體曲線的產生。最後濺鍍氧化鋁鋅及銀電極,完成同質pn接面二極體之製作。在濺鍍先驅層、化學水浴法製備硫化鋅及濺鍍掺鋁之氧化鋅時,會使用金屬光罩(shadow mask)將元件規範成圓形區域,此目的在於讓電流的分佈更加均勻。
    本實驗並以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X光繞射儀(XRD)、I-V量測及螢光光譜儀(PL)等分析儀器,量測薄膜的表面形貌、成分比例、結構特性、二極體特性曲線及發光波段等資料。
    最後,由電壓-電流特性曲線可看出,此元件具有二極體之特性,並在無光害的環境下,進行發光測試可看到光的產生。

    In this thesis, the CuInAl metallic precursors were deposited by sputtering. The composition ratio of the precursors and how the layers were stacked will influence the grain size and morphology of the post-selenized film. In my experiment, three different stacking methods were tried to deposit the precursors. Among them, sputtering Al first and then co-sputtering Cu-In is the best to form CuInAlSe2 (CIASe) film with large grain size after a selenization process. The CIASe film can be transformed to a CuIn1-xAlxS2 (CIAS) film after a high temperature sulfurization process. The formulated CIAS film is a p-type material. In the experiments, the sulfur can replace selenium easily and the original morphology can be kept after the sulfurization. The band gap of a CIASe film is from 1 eV to 2.7 eV. The band gap of a CIAS film is from 1.5 eV to 3.5 eV. Sulfurization and composition of aluminum are keys to modulate the CIAS film’s band gap which is suitable for tuning the emitting wavelength of the light for light emitting diode (LED) applications.
    After formulated the p-type CIAS film, ZnS film was deposited by chemical bath deposition method, and then Zn atoms diffused into the skin surface of the CIAS film during an annealing process. The skin surface of p-type CIAS can be transformed to a n-type CIAS. Therefore a pn-homojunction can be formed. Finally, the AZO and Ag electrode were deposited by sputtering and a pn-homojunction diode was fabricated.
    During the deposition of precursors, ZnS and AZO layer, shadow masks were used for forming a circle active area for the purpose of spreading current evenly.
    Scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were used to observe the surface morphology, composition and phase identification of thin films, respectively. Photoluminescence measurement was to identify the bandgap of the CIAS film. Finally, the diodes were tested with forward bias. From the I-V curves, some devices showed obvious diode characteristics and a flash of lighting from the fabricated diodes can be observed without light pollution.

    目錄 中文摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 發光二極體(Light Emitting Diode;LED)之簡介 4 1-3 研究動機 5 第二章 發光二極體(Light Emitting Diode;LED)之介紹 7 2-1 LED的發展歷史 7 2-2 LED的原理 9 2-2-1 自發放射(Spontaneous Emission) 9 2-2-2 直接能隙與間接能隙 9 2-3 LED的製作方法 10 2-3-1 液相磊晶法(Liquid Phase Epitaxy;LPE) 10 2-3-2 氣相磊晶法(Vapor Phase Epitaxy;VPE) 11 2-3-3 有機金屬化學氣相沉積法(Metal Organic Chemical Vapor Deposition;MOCVD) 11 2-3-4 分子束磊晶(Molecular Beam Epataxy;MBE) 12 2-4 常見的LED材料 13 2-4-1 GaAsP 13 2-4-2 AlGaAs 13 2-4-3 AlGaInP 14 2-4-4 InGaN 15 2-5 銅銦二硒與銅銦鋁二硒之探討 15 2-5-1 簡介 15 2-5-2 材料特性 16 2-5-3 CuInSe2薄膜之製備方式 17 2-6 CuIn1-xAlxS2發光二極體元件架構 21 2-6-1 鉬(Molybdenum;Mo)金屬阻障層 22 2-6-2 P型區CuIn1-xAlxS2 22 2-6-3 硫化鋅(ZnS)層 23 2-6-4 氧化鋁鋅(AZO)透明導電層 24 第三章 實驗 31 3-1 實驗材料 31 3-2 實驗儀器 32 3-2-1 濺鍍系統 32 3-2-2 方形高溫爐與石英爐管 33 3-3 實驗流程 34 3-3-1 ITO基板之清洗 35 3-3-2 濺鍍鉬(Mo) 35 3-3-3 濺鍍鋁(Al)及共濺鍍銅銦(Cu-In) 35 3-3-4 硒化(selenization)製程 36 3-3-5 硫化(sulfurization)製程 36 3-3-6 化學水浴法(CBD)製備ZnS 36 3-3-7 濺鍍AZO透明導電層 38 3-3-8 濺鍍銀電極 38 3-4 分析儀器介紹 39 3-4-1 掃描式電子顯微鏡(SEM) 39 3-4-2 能量散射光譜儀(EDS) 41 3-4-3 X光繞射儀(XRD) 41 3-4-4 薄膜厚度輪廓測度儀(α- step) 43 3-4-5 螢光光譜儀(PL) 43 3-4-6 多功能電源電錶(Source Meter) 44 3-4-7 太陽光模擬器 45 第四章 結果與討論 56 4-1 P型區銅銦鋁二硒之探討 56 4-1-1 Cu-In-Al共濺鍍後硒化 56 4-1-2 Cu-In共濺鍍後硒化,再濺鍍Al後,再硒化 56 4-1-3 濺鍍Al後,共濺鍍Cu-In,再硒化 57 4-2 Cu、In比例對晶粒大小之影響 58 4-3 硫化(Sulfurization)製程之探討 59 4-3-1 Cu-In-Al共濺鍍後,直接硫化 59 4-3-2 Cu-In共濺鍍後,直接硫化 60 4-3-3 濺鍍Al後,共濺鍍Cu-In,再硒化後,再硫化 61 4-4 I-V量測 61 4-5 螢光光譜儀(Photoluminescence;PL)量測 63 4-6 太陽光模擬器量測 64 4-6-1 量測動機 64 4-6-2 量測結果 65 4-6-3 分析與討論 66 4-7 LED發光測試 66 第五章 結論 81 參考文獻 83

    [1] 經濟部能源局, LED照明節能應用技術手冊: 2012.
    [2] 郭浩中, 賴芳儀, and 郭守義, LED原理與應用: 五南, 2009, ch. 2; ch.3.
    [3] H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907.
    [4] G. Destriau, "Experimental studies on the action of an electric field on phosphorescent sulfides," J. chem. Phys, vol. 33, p. 620, 1936.
    [5] N. Holonyak and S. Bevacqua, "Coherent (visible) light emission from Ga (As1-xPx) junctions," Applied Physics Letters, vol. 1, pp. 82-83, 1962.
    [6] M. G. Craford and W. Groves, "Vapor phase epitaxial materials for LED applications," Proceedings of the IEEE, vol. 61, pp. 862-880, 1973.
    [7] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, p. 1687, 1994.
    [8] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese journal of applied physics, vol. 34, pp. L797-L799, 1995.
    [9] S. M. Sze, Semiconductor devices: physics and technology: John Wiley & Sons, 2008, ch. 2; ch. 4; ch. 5; ch. 9; ch. 10.
    [10] 陳隆建, 發光二極體之原理與製程: 全華圖書, 2006, ch. 5; ch. 6; ch. 8.
    [11] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering: Wiley, 2011, pp. 571-573.
    [12] J. Shay, S. Wagner, and H. Kasper, "Efficient CuInSe/CdS solar cells," Applied Physics Letters, vol. 27, p. 89, 1975.
    [13] L. Kazmerski, F. White, and G. Morgan, "Thin‐film CuInSe2/CdS heterojunction solar cells," Applied Physics Letters, vol. 29, pp. 268-270, 1976.
    [14] R. Mickelsen and W. Chen, "Polycrystalline thin-film CuInSe2 solar cells," in 16th Photovoltaic Specialists Conference, 1982, pp. 781-785.
    [15] J. López-García and C. Guillén, "CuIn1−xAlxSe2 thin films obtained by selenization of evaporated metallic precursor layers," Thin Solid Films, vol. 517, pp. 2240-2243, 2009.
    [16] E. Don, R. Hill, and G. Russell, "The structure of CuInSe2 films formed by co-evaporation of the elements," Solar cells, vol. 16, pp. 131-142, 1986.
    [17] M. Varela, E. Bertran, M. Manchon, J. Esteve, and J. Morenza, "Optical properties of co-evaporated CuInSe2 thin films," Journal of Physics D: Applied Physics, vol. 19, p. 127, 1986.
    [18] T. Pisarkiewicz and H. Jankowski, "Vacuum selenization of metallic multilayers for CIS solar cells," Vacuum, vol. 70, pp. 435-438, 2003.
    [19] F. Adurodija, S. Kim, S. Kim, J. Song, K. Yoon, and B. Ahn, "Characterization of co-sputtered Cu-In alloy precursors for CuInSe2 thin films fabrication by close-spaced selenization," Solar energy materials and solar cells, vol. 55, pp. 225-236, 1998.
    [20] D. Lincot, J.-F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, and J. Fauvarque, "Chalcopyrite thin film solar cells by electrodeposition," Solar Energy, vol. 77, pp. 725-737, 2004.
    [21] S. Grindle, A. Clark, S. Rezaie‐Serej, E. Falconer, J. McNeily, and L. Kazmerski, "Growth of CuInSe2 by molecular beam epitaxy," Journal of Applied Physics, vol. 51, pp. 5464-5469, 1980.
    [22] B. Pamplin and R. Feigelson, "Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds," Thin Solid Films, vol. 60, pp. 141-146, 1979.
    [23] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, "Blue Light-Emitting Diode Based on ZnO," Japanese journal of applied physics, vol. 44, pp. L643-L645, 2005.
    [24] 汪建民, 材料分析: 中國材料科學學會發行, 2001, ch.6; ch.7.
    [25] 許樹恩 and 吳泰伯, X光繞射原理與材料結構分析: 民全書局, 1996, pp. 169.
    [26] J. Olejníček, L. Flannery, S. Darveau, C. Exstrom, Š. Kment, N. Ianno, and R. Soukup, "CuIn1−xAlxS2 thin films prepared by sulfurization of metallic precursors," Journal of Alloys and Compounds, vol. 509, pp. 10020-10024, 2011.
    [27] R. Noufi, R. Axton, C. Herrington, and S. Deb, "Electronic properties versus composition of thin films of CuInSe2," Applied Physics Letters, vol. 45, pp. 668-670, 1984.
    [28] S. O. Kasap, Optoelectronics and photonics: Prentice Hall, 2001, ch. 6, sec. 2, pp. 257-259.

    下載圖示 校內:2014-07-16公開
    校外:2016-07-16公開
    QR CODE