簡易檢索 / 詳目顯示

研究生: 林筠
Lin, Yun
論文名稱: 線剛性介質在彈性體內脫層之應力分析
Stress analysis of debonded rigid line in elastic solid
指導教授: 宋見春
Song, Jian-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 69
中文關鍵詞: 線剛性介質脫層現象奇異階數異向性材料
外文關鍵詞: rigid line, debonded, anisotropic, singularity order
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討線剛性介質在彈性體內受外力作用產生脫層之應力分析。線剛性介質於彈性體之脫層可視為彈性體內含單一裂縫,而裂縫之上表面曳引力為零,其下表面則與剛性介質緊密相接,線剛性介質表面則受已知外力作用。藉由異向性位移與應力函數之基本公式,可將分析之問題化為一組奇異積分方程組,以未知連續分佈力分布在線剛性介質上進行分析,文中探討了材料異向性程度對彈性體上應力場與線剛性介質兩端應力強度因子之影響。

    The stress analysis of a rigid inclusion debonded in elastic solid under concentrated force at the center of the inclusion was analyzed in this paper. The debonded phenomenon could be considered as a crack in elastic solid with two different conditions on the surfaces of the crack. The traction-free condition was applied on the upper surface, and the lower surface was considered to be connected to a rigid inclusion on which some loading was applied. Eshebly-Stroh formalism was used to establish the Cauchy type singular integral equation to set up the debonded problem which was solved by Gerasoulis numerical method. With the continuous loading function on the surface of rigid inclusion being determined, the effects of the degree of anisotropy on the distributing stress field and the stress intensity factor were fully understood and the results were discussed.

    摘要 I Abstract II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 本文綱要 1 1.2 研究動機與背景 2 1.3 文獻回顧 3 第二章 理論基礎 4 2.1 位移函數與應力函數 4 2.2 S、H與L矩陣 10 第三章 問題推演 13 3.1 問題描述 13 3.2 公式推導 14 3.3 奇異階數 20 3.4 應力強度因子 26 第四章 數值方法 28 4.1 奇異積分方程組之正規化 28 4.2 標準型奇異積分方程組之離散化 29 第五章 數值結果與討論 33 5.1 數值分析驗證部分 33 5.2 線剛性介質受拉力之脫層探討 42 5.3 線剛性介質受面內剪力之脫層探討 51 5.4 線剛性介質受反平面剪力產生脫層之探討 59 第六章 結論與未來研究方向 65 參考文獻 67

    [1] Ballarini, R., Shah, S. P. and Keer, L. M. "Failure characteristics of short anchor bolts embedded in a brittle material.", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 404. No. 1826. The Royal Society, (1986): 35-54.
    [2] Ballarini, R. "An integral equation approach for rigid line inhomogeneity problems.", International Journal of Fracture, 33.2 (1987): R23-R26.
    [3] Ballarini, R., Shah, S. P. and Keer, L. M. "An analytical model for the pull-out of rigid anchors.", International journal of fracture, 33.2 (1987): 75-94.
    [4] Ballarini, R. "A rigid line inclusion at a bimaterial interface.", Engineering Fracture Mechanics, 37.1 (1990): 1-5.
    [5] Ballarini, R. "A certain mixed boundary value problem for a bimaterial interface.", International journal of solids and structures, 32.3 (1995): 279-289.
    [6] Erdogan, F., and Gupta, G. D. "On the numerical solution of singular integral equations (Singular integral equations numerical solution from Gauss-Chebyshev formulas for mixed boundary value problems).", Quarterly of Applied mathematics, 29 (1972): 525-534.
    [7] Gerasoulis, A., and Srivastav, R. P. "A method for the numerical solution of singular integral equations with a principal value integral.", International Journal of Engineering Science, 19.9 (1981): 1293-1298.
    [8] Gerasoulis, A. "The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type.", Computers & mathematics with applications, 8.1 (1982): 15-22.
    [9] Hwu, C., Anisotropic elastic plates. Springer Science & Business Media, 2010.
    [10] Knein, M. "Zur theorie des druckversuchs.", Über die Grundlagen der Balkentheorie/Die Spannungen und Formänderungen von Balken mit rechteckigem Querschnitt/Stegbeanspruchung hoher Biegungsträger/Zur Theorie des Druckversuchs. Springer Berlin Heidelberg, 1927. 43-62.
    [11] Lekhnitskii, S. G., Theory of elasticity of an anisotropic elastic body. Hoden-Day, San Francisco (1965).
    [12] Lekhnitskii, S. G., Anisotropic plates. No. FTD-HT-23-608-67. Foreign Technology Div Wright-Patterson Afb Oh, 1968.
    [13] Miller, G. R., and Keer, L. M. "Approximate Analytical Model of Anchor Pull-Out Test.", Journal of Applied Mechanics, 49.4 (1982): 768-772.
    [14] Sih, G., Paris, P. C. and Irwin, G. R. "On cracks in rectilinearly anisotropic bodies.", International Journal of Fracture Mechanics, 1.3 (1965): 189-203.
    [15] Sih, G., and Leibowitz, H. "Mathematical theories of brittle fracture. W: H. Lebowitz (red.) Fracture–An Advanced Treatise, Vol. II. Mathematical Fundamentals, str. 68–191." (1968).
    [16] Stroh, A. N. "Dislocations and cracks in anisotropic elasticity.", Philosophical magazine, 3.30 (1958): 625-646.
    [17] Stroh, A. N. "Steady state problems in anisotropic elasticity.", Journal of Mathematics and Physics, 41.1 (1962): 77-103.
    [18] Theocaris, P. S., and Ioakimidis, N. I. "Numerical integration methods for the solution of singular integral equations.", Quarterly of Applied Mathematics (1977): 173-183.
    [19] Ting, T. C. T., and Chou, S. C. "Stress singularities at tip of contact zone in anisotropic interface crack.", Developments in the science and technology of composite materials, (1985): 164-169.
    [20] Ting, T. C. T. "Explicit solution and invariance of the singularities at an interface crack in anisotropic composites.", International Journal of Solids and Structures, 22.9 (1986): 965-983.
    [21] Ting, T. C. T., Anisotropic elasticity: theory and applications. No. 45. Oxford University Press on Demand, 1996.
    [22] Williams, M. L. "Stress singularities resulting from various boundary conditions." Journal of applied mechanics, 19.4 (1952): 526-528.
    [23] Suo, Z. "Singularities interacting with interfaces and cracks." International Journal of Solids and Structures, 25.10 (1989): 1133-1142.
    [24] 洪崇倫. "裂紋與剛性線異質物之互制研究." 成功大學土木工程學系學位論文(2008): 1-109.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE