研究生: |
陳文淵 Chen, Wen-Yuan |
---|---|
論文名稱: |
驗證分子及奈米共振腔所形成的量子強耦合 Verification of quantum strong coupling between molecules and nanocavities |
指導教授: |
陳宣燁
Chen, Shiuan-Yeh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | 強耦合現象 、電漿子共振腔 、螢光分子 、DNA修飾 、PL(photoluminescence)光譜 、光淬滅(photobleaching) 、多層膜修飾 |
外文關鍵詞: | strong coupling, plasmon cavity, fluorescent molecules, DNA, PL (photoluminescence) spectrum, photobleaching, layer by layer modification |
相關次數: | 點閱:143 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當兩系統交互作用產生耦合現象時,系統間的能量會互相交換,依交互作用的強度,可分為弱耦合與強耦合作用。本研究主要研究的是光與物質的強耦合現象,光指的是由奈米結構組成的電漿子共振腔,物質指的是共振腔內的螢光分子,當強耦合現象發生時,電漿子共振腔原有的共振模態與螢光分子原有的能階會有明顯的改變,產生兩個新的模態,因此可以在量測散射光譜時觀察到雙峰值的分裂光譜,而此種能量改變的機制在化學、光學…等領域,十分具有應用潛力。
本研究主要利用金粒子與金膜來建構電漿子共振腔,並以修飾有螢光分子的DNA作為主要的連接媒介將金粒子與金膜組合。而為了驗證製作出來的強耦合單元(以下簡稱單元)有達到強耦合領域,本研究以四種不同的方法來提出完善的驗證,第一種方法為量測散射光譜並搭配CMOS彩色影像來驗證,因其他非強耦合的物理機制也有可能會造成光譜有分裂的情形,而本研究利用CMOS彩色影像能夠初步也有效的排除這些非預期的物理機制;第二種方法為量測PL(photoluminescence)光譜,實驗上總共挑選了5個散射光譜有明顯分裂的單元來量測PL光譜,並且5個單元皆量測到PL光譜有明顯的雙峰值;第三種是利用光淬滅實驗(photobleaching),挑選了有經過多層膜(layer by layer)修飾的5個單元來執行實驗,各單元以100 W/cm2 532 nm綠光二極體雷射照射90分鐘後,發現共有3個單元的散射光譜由雙峰值變為單峰值光譜,利用以上兩種方法,證明強耦合單元上有~60%以上觀察到光譜分裂的情形是由於共振腔與螢光分子耦合所造成;最後利用多層膜修飾實驗搭配理論的耦合震盪模型來驗證,由分析結果,我們推論耦合系統有達到強耦合的領域,且共振腔耦合到的螢光分子數量介於1~9個之間。
In this study, gold particles and gold films were used to construct a plasmon cavity, and DNA modified with fluorescent molecules was used as the connection medium to com-bine gold particles and gold films. In order to verify that the strong coupling units can reach strong coupling region, this study proposes a complete verification with four dif-ferent methods. The first method is to measure the scattering spectrum and use CMOS color images to verify, because other non-strong coupling physical mechanisms may al-so cause the spectrum to split, and we use CMOS color images to initially and effective-ly eliminate these unexpected physical mechanisms; the second method is to measure PL (photoluminescence), in this study, a total of 5 units with obvious splitting of the scat-tering spectrum were selected to measure the PL spectrum, and the 5 units measured the PL spectrum with obvious double peaks; the third method is photobleaching experi-ments, we selected 5 units on the same gold film that modified by layer by layer to per-form the experiment, each unit was irradiated with a 100 W/cm2 532 nm laser for 90 minutes, it was found that the scattering spectra of three units changed from double peaks to single peak. Finally, use the data obtained from the layer by layer modification experiment with the coupling oscillation model to verify the strong coupling, According to the analysis result, we infer that the coupling system has a strong coupling field, and the number of molecules coupled to the cavity is between 1 and 9.
1. Törmö, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: A review. Reports on Progress in Physics 78, (2015).
2. Dovzhenko, D. S., Ryabchuk, S. v., Rakovich, Y. P. & Nabiev, I. R. Light-matter interaction in the strong coupling regime: Configurations, conditions, and applica-tions. Nanoscale 10, 3589–3605 (2018).
3. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
4. Chikkaraddy, R. et al. Mapping Nanoscale Hotspots with Single-Molecule Emit-ters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Letters 18, 405–411 (2018).
5. Roller, E. M., Argyropoulos, C., Högele, A., Liedl, T. & Pilo-Pais, M. Plas-mon-Exciton Coupling Using DNA Templates. Nano Letters 16, 5962–5966 (2016).
6. Leng, H., Szychowski, B., Daniel, M. C. & Pelton, M. Strong coupling and in-duced transparency at room temperature with single quantum dots and gap plas-mons. Nature Communications 9, (2018).
7. 黃理敬(2017)。修飾拉曼標記表面以用於腦瘤細胞的標定(未出版博碩士論文)。國立成功大學,台南市。.
8. Novotny, Lukas, and Bert Hecht. Principles of nano-optics. Cambridge university press, 2012. (2012).
9. Tischler, J. R. et al. Solid state cavity QED: Strong coupling in organic thin films. Organic Electronics: physics, materials, applications 8, 94–113 (2007).
10. 曾哲明(2017)。分子生物學(第二版)。新北市:文京。.
11. Hannestad, Jonas. Fluorescence in bio-inspired nanotechnology: First as probe, then as function. Springer Science & Business Media. (2013).
12. Vologodskii, Alexander. Biophysics of DNA. Cambridge University Press. (2015).
13. Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Research 34, 564–574 (2006).
14. Feng, B. et al. Hydrophobic catalysis and a potential biological role of DNA un-stacking induced by environment effects. Proceedings of the National Academy of Sciences of the United States of America 116, 17169–17174 (2019).
15. Liu, J. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Physical Chemistry Chemical Physics 14, 10485–10496 (2012).
16. Sadava, Hills. “Heller, and Berenbaum.” Life: The Science of Biology. 9th ed. New York, NY: WH Freeman and Company. P63 (2011).
17. Bhushan, Bharat, E. Springer handbook of nanotechnology 3rd. (Springer, 2010).
18. Kokkin, D. L. et al. Au-S Bonding Revealed from the Characterization of Dia-tomic Gold Sulfide, AuS. Journal of Physical Chemistry A 119, 11659–11667 (2015).
19. Reimers, J. R., Ford, M. J., Halder, A., Ulstrup, J. & Hush, N. S. Gold surfaces and nanoparticles are protected by Au(0)-thiyl species and are destroyed when Au(I)-thiolates form. Proceedings of the National Academy of Sciences of the United States of America 113, E1424–E1433 (2016).
20. Paik, W. K., Eu, S., Lee, K., Chon, S. & Kim, M. Electrochemical reactions in adsorption of organosulfur molecules on gold and silver: Potential dependent ad-sorption. Langmuir 16, 10198–10205 (2000).
21. Kiguchi, M. et al. Conductance of single 1,4-benzenediamine molecule bridging between Au and Pt electrodes. Journal of Physical Chemistry C 112, 13349–13352 (2008).
22. Liu, B. & Liu, J. Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Analytical Methods 9, 2633–2643 (2017).
23. Erdmann, Volker A., and Jan Barciszewski, Eds. DNA and RNA Nanobiotechnol-ogies in medicine: Diagnosis and treatment of diseases. (Springer Science & Business Media, 2013).
24. Kokkin, D. L. et al. Polymerization at the alkylthiolate-Au(111) interface_sup. Journal of Physical Chemistry A 7698 (2018).
25. Mirkin, C., Letsinger, R., Mucic, R. et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials*.
26. Grönbeck, H. & Häkkinen, H. Polymerization at the alkylthiolate-Au(111) inter-face. Journal of Physical Chemistry B 111, 3325–3327 (2007).
27. 陳浚弘(2019)。螢光分子與單一奈米共振腔的量子強耦合逼近(未出版博碩士論文)。國立成功大學,台南市。.
28. Jang, N. H. The coordination chemistry of DNA nucleosides on gold nanoparti-cles as a probe by SERS. Bulletin of the Korean Chemical Society 23, 1790–1800 (2002).
29. Koo, K. M., Sina, A. A. I., Carrascosa, L. G., Shiddiky, M. J. A. & Trau, M. DNA-bare gold affinity interactions: Mechanism and applications in biosensing. Analytical Methods 7, 7042–7054 (2015).
30. Carnerero, J. M., Jimenez-Ruiz, A., Castillo, P. M. & Prado-Gotor, R. Covalent and Non-Covalent DNA–Gold-Nanoparticle Interactions: New Avenues of Re-search. ChemPhysChem 18, 17–33 (2017).
31. Kimura-Suda, H., Petrovykh, D. Y., Tarlov, M. J. & Whitman, L. J. Base-dependent competitive adsorption of single-stranded DNA on gold. Journal of the American Chemical Society 125, 9014–9015 (2003).
32. Piana, S. & Bilic, A. The nature of the adsorption of nucleobases on the gold [111] surface. Journal of Physical Chemistry B 110, 23467–23471 (2006).
33. Carnerero, J. M., Sánchez-Coronilla, A., Martín, E. I., Jimenez-Ruiz, A. & Pra-do-Gotor, R. Quantification of nucleobases/gold nanoparticles interactions: Ener-getics of the interactions through apparent binding constants determination. Phys-ical Chemistry Chemical Physics 19, 22121–22128 (2017).
34. Wasa, Kiyotaka, Isaku Kanno, and Hidetoshi Kotera. “Handbook of sputter depo-sition technology: fundamentals and applications for functional thin films.” Nano-materials and MEMS. William Andrew 26 (2012).
35. Wasa, Kiyotaka, Isaku Kanno, and Hidetoshi Kotera, eds. Handbook of sputter deposition technology: fundamentals and applications for functional thin films, nano-materials and MEMS. William Andrew, 2012.
36. 陳家全、李家維、楊瑞森(1991), 生物電子顯微鏡學, 國科會精儀中心編印, pp109-113.
37. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Mi-croanalysis, 2nd ed. (Springer, Berlin, 1998).
38. Mock, J. J. et al. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Letters 8, 2245–2252 (2008).
39. Huang, C. Z., Wu, M. J. & Chen, S. Y. High order gap modes of film-coupled nanospheres. Journal of Physical Chemistry C 119, 13799–13806 (2015).
40. Benz, F. et al. Single-molecule optomechanics in “picocavities.” Science 354, 726–729 (2016).
41. Huh, J. H., Lee, J. & Lee, S. Comparative Study of Plasmonic Resonances be-tween the Roundest and Randomly Faceted Au Nanoparticles-on-Mirror Cavities. ACS Photonics 5, 413–421 (2018).
42. Antosiewicz, T. J., Apell, S. P. & Shegai, T. Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling. ACS Pho-tonics 1, 454–463 (2014).
43. Kongsuwan, N. et al. Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation. ACS Photonics 7, 463–471 (2020).
44. Wersall, M., Cuadra, J., Antosiewicz, T. J., Balci, S. & Shegai, T. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Letters 17, 551–558 (2017).
45. Kongsuwan, N. et al. Quantum Plasmonic Immunoassay Sensing. Nano Letters 19, 5853–5861 (2019).
46. Stete, F., Koopman, W. & Bargheer, M. Signatures of Strong Coupling on Nano-particles: Revealing Absorption Anticrossing by Tuning the Dielectric Environ-ment. ACS Photonics 4, 1669–1676 (2017).
47. Xu, D. et al. Quantum plasmonics: new opportunity in fundamental and applied photonics: publisher’s note. Advances in Optics and Photonics 10, 939 (2018).
48. Ojambati, O. S. et al. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nature Communications 10, 1–7 (2019).
49. Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Physical Review Letters 100, 1–4 (2008).