| 研究生: |
吳仕名 Wu, Shih-Ming |
|---|---|
| 論文名稱: |
有曲率平方項的修正重力理論之史瓦西解 The Schwarzschild solutions of modified theories of gravity up to quadratic curvature |
| 指導教授: |
游輝樟
Yo, Hwei-Jang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 修正引力理論 、瑞奇二次曲率引力 |
| 外文關鍵詞: | modified gravity, Ricci quadratic gravity |
| 相關次數: | 點閱:90 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們考慮拉格朗日量為$\mathcal{L}=a_{0}+a_{1}R+a_{2}R^{2}+a_{3}R_{\mu\nu}R^{\mu\nu}$的修正引力理論, 其中 $a_{0}, a_{1}, a_{2}, a_{3}$ 為常數 ($a_{2}$, $a_{3}$ 不全為零), $R$ 為瑞奇純量, $R_{\mu\nu}$ 為瑞奇張量. 為求得基本的史瓦西外部解, 我們假設符合靜態條件並設定度規解 ${\rm d}s^{2}=g_{tt}(r){\rm d}t^{2}+g_{rr}(r){\rm d}r^{2}+r^{2}({\rm d}\theta^{2}+\sin^{2}\theta{\rm d}\phi)$ 滿足此條件 $-g_{tt}(r)=1/g_{rr}(r)$. 我們得到只有三種可能的史瓦析解形式: (i) 當 $a_{2}\ne0$ 並且 $a_{0}=a_{1}=a_{3}=0$ (相當於單純 $R^{2}$ 引力)時, $-g_{tt}(r)=1+\frac{b_{1}}{r}+\frac{b_{2}}{r^{2}}$ 或 $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$, (ii) 當 $3a_{2}+a_{3}=0$ 並且 $a_{0}=a_{1}=0$ (等價於共形引力), $-g_{tt}(r)=1+c_{0}+\frac{b_{1}}{r}+c_{1}r+c_{2}r^{2}$, (iii) 當其他 $(a_{0}\ne0, a_{1}\ne0, a_{2}, a_{3})$ 或 $(a_{0}=0, a_{1}=0, a_{2}, a_{3})$ 組合時, $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$. 其中這些 $b$ 與 $c$ 為由邊界條件決定的常數. 對於內部解, 我們考慮了理想流體的均勻星體. 利用射擊法, 我們可以求出此修正重力理論的數值解.
We consider modified gravity theory with Lagrangian $\mathcal{L}=a_{0}+a_{1}R+a_{2}R^{2}+a_{3}R_{\mu\nu}R^{\mu\nu}$, where $a_{0}, a_{1}, a_{2}, a_{3}$ are constants ($a_{2}$, $a_{3}$ not all vanishing), $R$ is the Ricci scalar, and $R_{\mu\nu}$ is the Ricci tensor. To obtain the basic exterior Schwarzschild solution, we assume static condition and parametrize the metric solution ${\rm d}s^{2}=g_{tt}(r){\rm d}t^{2}+g_{rr}(r){\rm d}r^{2}+r^{2}({\rm d}\theta^{2}+\sin^{2}\theta{\rm d}\phi)$ with the condition $-g_{tt}(r)=1/g_{rr}(r)$. We conclude that there are only three types of possible Schwarzschild metrics with: (i) $-g_{tt}(r)=1+\frac{b_{1}}{r}+\frac{b_{2}}{r^{2}}$ or $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$ for $a_{2}\ne0$ and $a_{0}=a_{1}=a_{3}=0$ (equivalent to pure $R^{2}$ gravity), (ii) $-g_{tt}(r)=1+c_{0}+\frac{b_{1}}{r}+c_{1}r+c_{2}r^{2}$ for $3a_{2}+a_{3}=0$ and $a_{0}=a_{1}=0$ (equivalent to conformal gravity), (iii) $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$ for other combinations of $(a_{0}\ne0, a_{1}\ne0, a_{2}, a_{3})$ or $(a_{0}=0, a_{1}=0, a_{2}, a_{3})$. The $b$'s and $c$'s are constants which can be determined by boundary conditions. For the interior solution, a uniform star of perfect fluid is considered. Via the shooting method, we could find the numerical solution for the modified gravity theory.
[1] Gianfranco Bertone and Tim M. P. Tait. A new era in the search for dark matter. Nature, 562(9-10):51–56, October 2018.
[2] Piyabut Burikham, Tiberiu Harko, Kulapant Pimsamarn, and Shahab Shahidi. Dark matter as a Weyl geometric effect. Phys. Rev. D, 107:064008, March 2023.
[3] Kip S. Thorne Charles W. Misner and John A. Wheeler. Gravitation. Princeton University Press, Princeton, New Jersey, 2017.
[4] J. Struckmeier D. Vasak D. Kehm, J. Kirsch and M. Hanauske. Violation of Birkhoff's theorem for pure quadratic gravity action. Astronomical Notes, 338(9-10):1015–1018, September 2017.
[5] Philip D. Mannheim. Alternatives to dark matter and dark energy. Progress in Particle and Nuclear Physics, 56(2):340–445, April 2006.
[6] Philip D. Mannheim and Demosthenes Kazanas. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves. The Astrophysical Journal, 342:635–638, July 1989.
[7] Philip D. Mannheim and Demosthenes Kazanas. Solutions to the Reissner-Nordström, Kerr, and Kerr-Newman problems in fourth-order conformal Weyl gravity. Phys. Rev. D, 44:417–423, July 1991.
[8] Philip D. Mannheim and James G O'Brien. Galactic rotation curves in conformal gravity. Journal of Physics: Conference Series, 437(1):340–445, April 2012.
[9] M. Milgrom. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal, 270:365–370, October 1983.
[10] Hoang Ky Nguyen. Beyond Schwarzschild–de Sitter spacetimes: I. a new exhaustive class of metrics inspired by Buchdahl for pure R2 gravity in a compact form. Phys. Rev. D, 106:104004, November 2022.
[11] Hoang Ky Nguyen. Beyond Schwarzschild–de Sitter spacetimes. II. an exact non-Schwarzschild metric in pure R2 gravity and new anomalous properties of R2 spacetimes. Phys. Rev. D, 107:104008, May 2023.
[12] Hoang Ky Nguyen. Emerging Newtonian potential in pure R2 gravity on a de Sitter background. Phys. Rev. D, 2023(127), August 2023.
[13] D. R. K. Reddy P. J. Ravindranath, Y. Aditya and M. V. Subba Rao. Birkhoff's theorem in f(R) theory of gravity. Eur. Phys. J. Plus, 133(376), July 2018.
[14] Thomas P. Sotiriou and Valerio Faraoni. f(R) theories of gravity. Rev. Mod. Phys., 82(1):451–497, March 2010.