簡易檢索 / 詳目顯示

研究生: 吳仕名
Wu, Shih-Ming
論文名稱: 有曲率平方項的修正重力理論之史瓦西解
The Schwarzschild solutions of modified theories of gravity up to quadratic curvature
指導教授: 游輝樟
Yo, Hwei-Jang
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 66
中文關鍵詞: 修正引力理論瑞奇二次曲率引力
外文關鍵詞: modified gravity, Ricci quadratic gravity
相關次數: 點閱:90下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們考慮拉格朗日量為$\mathcal{L}=a_{0}+a_{1}R+a_{2}R^{2}+a_{3}R_{\mu\nu}R^{\mu\nu}$的修正引力理論, 其中 $a_{0}, a_{1}, a_{2}, a_{3}$ 為常數 ($a_{2}$, $a_{3}$ 不全為零), $R$ 為瑞奇純量, $R_{\mu\nu}$ 為瑞奇張量. 為求得基本的史瓦西外部解, 我們假設符合靜態條件並設定度規解 ${\rm d}s^{2}=g_{tt}(r){\rm d}t^{2}+g_{rr}(r){\rm d}r^{2}+r^{2}({\rm d}\theta^{2}+\sin^{2}\theta{\rm d}\phi)$ 滿足此條件 $-g_{tt}(r)=1/g_{rr}(r)$. 我們得到只有三種可能的史瓦析解形式: (i) 當 $a_{2}\ne0$ 並且 $a_{0}=a_{1}=a_{3}=0$ (相當於單純 $R^{2}$ 引力)時, $-g_{tt}(r)=1+\frac{b_{1}}{r}+\frac{b_{2}}{r^{2}}$ 或 $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$, (ii) 當 $3a_{2}+a_{3}=0$ 並且 $a_{0}=a_{1}=0$ (等價於共形引力), $-g_{tt}(r)=1+c_{0}+\frac{b_{1}}{r}+c_{1}r+c_{2}r^{2}$, (iii) 當其他 $(a_{0}\ne0, a_{1}\ne0, a_{2}, a_{3})$ 或 $(a_{0}=0, a_{1}=0, a_{2}, a_{3})$ 組合時, $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$. 其中這些 $b$ 與 $c$ 為由邊界條件決定的常數. 對於內部解, 我們考慮了理想流體的均勻星體. 利用射擊法, 我們可以求出此修正重力理論的數值解.

    We consider modified gravity theory with Lagrangian $\mathcal{L}=a_{0}+a_{1}R+a_{2}R^{2}+a_{3}R_{\mu\nu}R^{\mu\nu}$, where $a_{0}, a_{1}, a_{2}, a_{3}$ are constants ($a_{2}$, $a_{3}$ not all vanishing), $R$ is the Ricci scalar, and $R_{\mu\nu}$ is the Ricci tensor. To obtain the basic exterior Schwarzschild solution, we assume static condition and parametrize the metric solution ${\rm d}s^{2}=g_{tt}(r){\rm d}t^{2}+g_{rr}(r){\rm d}r^{2}+r^{2}({\rm d}\theta^{2}+\sin^{2}\theta{\rm d}\phi)$ with the condition $-g_{tt}(r)=1/g_{rr}(r)$. We conclude that there are only three types of possible Schwarzschild metrics with: (i) $-g_{tt}(r)=1+\frac{b_{1}}{r}+\frac{b_{2}}{r^{2}}$ or $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$ for $a_{2}\ne0$ and $a_{0}=a_{1}=a_{3}=0$ (equivalent to pure $R^{2}$ gravity), (ii) $-g_{tt}(r)=1+c_{0}+\frac{b_{1}}{r}+c_{1}r+c_{2}r^{2}$ for $3a_{2}+a_{3}=0$ and $a_{0}=a_{1}=0$ (equivalent to conformal gravity), (iii) $-g_{tt}(r)=1+\frac{b_{1}}{r}+c_{2}r^{2}$ for other combinations of $(a_{0}\ne0, a_{1}\ne0, a_{2}, a_{3})$ or $(a_{0}=0, a_{1}=0, a_{2}, a_{3})$. The $b$'s and $c$'s are constants which can be determined by boundary conditions. For the interior solution, a uniform star of perfect fluid is considered. Via the shooting method, we could find the numerical solution for the modified gravity theory.

    摘要i Abstract ii Acknowledgments iii Table of Contents iv List of Tables v List of Figures vi Nomenclature vii Chapter 1. Introduction 1 Chapter 2. Model 3 Modified Lagrangian and the Field Equations 3 Static Spherical Symmetric Metric 5 Chapter 3. Calculation and Results 7 Exterior Schwarzschild Solutions 7 Interior Numerical Solutions 25 Chapter 4. Conclusion 34 References 36 Appendix A. Variation of Relevant Quantities 37 Appendix B. Euler Differential Equation 40 Appendix C. Matlab Codes for Interior Numerical Solution 42 C.1 Symbolic reduction 42 C.2 Numerical solution 48

    [1] Gianfranco Bertone and Tim M. P. Tait. A new era in the search for dark matter. Nature, 562(9-10):51–56, October 2018.
    [2] Piyabut Burikham, Tiberiu Harko, Kulapant Pimsamarn, and Shahab Shahidi. Dark matter as a Weyl geometric effect. Phys. Rev. D, 107:064008, March 2023.
    [3] Kip S. Thorne Charles W. Misner and John A. Wheeler. Gravitation. Princeton University Press, Princeton, New Jersey, 2017.
    [4] J. Struckmeier D. Vasak D. Kehm, J. Kirsch and M. Hanauske. Violation of Birkhoff's theorem for pure quadratic gravity action. Astronomical Notes, 338(9-10):1015–1018, September 2017.
    [5] Philip D. Mannheim. Alternatives to dark matter and dark energy. Progress in Particle and Nuclear Physics, 56(2):340–445, April 2006.
    [6] Philip D. Mannheim and Demosthenes Kazanas. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves. The Astrophysical Journal, 342:635–638, July 1989.
    [7] Philip D. Mannheim and Demosthenes Kazanas. Solutions to the Reissner-Nordström, Kerr, and Kerr-Newman problems in fourth-order conformal Weyl gravity. Phys. Rev. D, 44:417–423, July 1991.
    [8] Philip D. Mannheim and James G O'Brien. Galactic rotation curves in conformal gravity. Journal of Physics: Conference Series, 437(1):340–445, April 2012.
    [9] M. Milgrom. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal, 270:365–370, October 1983.
    [10] Hoang Ky Nguyen. Beyond Schwarzschild–de Sitter spacetimes: I. a new exhaustive class of metrics inspired by Buchdahl for pure R2 gravity in a compact form. Phys. Rev. D, 106:104004, November 2022.
    [11] Hoang Ky Nguyen. Beyond Schwarzschild–de Sitter spacetimes. II. an exact non-Schwarzschild metric in pure R2 gravity and new anomalous properties of R2 spacetimes. Phys. Rev. D, 107:104008, May 2023.
    [12] Hoang Ky Nguyen. Emerging Newtonian potential in pure R2 gravity on a de Sitter background. Phys. Rev. D, 2023(127), August 2023.
    [13] D. R. K. Reddy P. J. Ravindranath, Y. Aditya and M. V. Subba Rao. Birkhoff's theorem in f(R) theory of gravity. Eur. Phys. J. Plus, 133(376), July 2018.
    [14] Thomas P. Sotiriou and Valerio Faraoni. f(R) theories of gravity. Rev. Mod. Phys., 82(1):451–497, March 2010.

    下載圖示
    校外:立即公開
    QR CODE