簡易檢索 / 詳目顯示

研究生: 古雅竺
Ku, Ya-Chu
論文名稱: 第一型類胰島素生長因子經由Akt/mTOR路徑促進蟹足腫纖維母細胞中的腫瘤內皮標記1表現
Insulin-like Growth Factor-1 Stimulates Tumor Endothelial Marker 1 Expression through Akt/mTOR Pathway in Keloid Fibroblasts
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 53
中文關鍵詞: 腫瘤內皮標誌1纖維母細胞蟹足腫第一型類胰島素生長因子
外文關鍵詞: Tumor endothelial marker 1, fibroblasts, keloid, insulin-like growth factor-1
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤內皮標誌1是屬於第一型穿膜醣蛋白並表現在周細胞、基質細胞和纖維母細胞。腫瘤內皮標誌1的高表達與器官纖維化有關,如肝纖維化,腎纖維化和特發性肺纖維化。此外,腫瘤內皮標誌1參與在纖維化惡化過程中其基質細胞和纖維母細胞的增生和遷移。然而,腫瘤內皮標誌1是否參與在皮膚纖維化(蟹足腫),以及腫瘤內皮標誌1的增加是如何被調控的機制從未被研究過。在我們的研究中,臨床檢體顯示腫瘤內皮標誌1蛋白在蟹足腫纖維母細胞中的表達高於其對應的正常纖維母細胞。由於幾種生長因子和細胞因子,包括IGF-1,TGFβ,PDGF和TNFα,已被報導可促進蟹足腫的進程,我們研究這些與纖維化相關的因子是否可以調控NHDF中的腫瘤內皮標誌1表現,結果顯示只有IGF-1顯著增加腫瘤內皮標誌1蛋白的表現,並且出乎意料的發現腫瘤內皮標誌1 mRNA的表現不會受到IGF-1影響。此外,利用特異性抑製劑來抑制IGF-1R,Akt或mTOR後,皆可以顯著地使IGF-1誘導腫瘤內皮標誌1表達消失。放線菌酮(CHX)的刺激也可以使IGF-1誘導腫瘤內皮標誌1表達的情形消失,說明IGF-1誘導腫瘤內皮標誌1表達增加與蛋白質合成有關。此外,IGF-1對腫瘤內皮標誌1的影響在蟹足腫纖維母細胞中也可以看到,但在同一名患者組織中所分離的正常纖維母細胞中沒有看到此現象。我們目前的結果顯示在纖維母細胞中IGF-1可能透過Akt / mTOR途徑並藉由轉錄後修飾調控腫瘤內皮標誌1。先前的研究顯示腫瘤內皮標誌1可以增強PDGF和TGFβ的下游信號傳導。 因此,我們提出IGF-1轉錄後刺激腫瘤內皮標誌1的蛋白表現,並且進而增強蟹足腫纖維母細胞對PDGF和TGFβ的反應。

    Tumor endothelial marker 1 (TEM1), a type I transmembrane glycoprotein, is expressed in pericytes, stromal cells and fibroblasts. The elevated TEM1 expression has been implicated in fibrogenesis such as liver fibrosis, renal fibrosis, and idiopathic pulmonary fibrosis. Moreover, TEM1 is involved in proliferation and migration of stromal cells and fibroblasts, by which TEM1 promotes progression of fibrosis. However, whether TEM1 participates in skin fibrosis and the mechanisms by which TEM1 is up-regulated have never been investigated. Our study of clinical specimens showed that TEM1 protein expression was higher in keloid fibroblasts than that in their counterpart controls. Since several growth factors and cytokines, including insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGFβ), platelet-derived growth factor (PDGF) and tumor necrosis factor alpha (TNFα) have been shown to promote keloid progression, we investigated whether those fibrosis-associated factors could regulate TEM1 expression in normal human dermal fibroblasts (NHDF). The results showed that only IGF-1 significantly increased TEM1 protein expression. Surprisingly, TEM1 mRNA was not changed with IGF-1 treatment. Furthermore, suppression of IGF-1R, Akt or mTOR with specific inhibitors significantly reversed IGF-1-induced TEM1 expression. The treatment of cycloheximide could also reverse IGF-1-induced TEM1 expression, suggesting that IGF-1-induced up-regulation of TEM1 was associated with de novo protein synthesis. In addition, the stimulation of TEM1 by IGF-1 was also demonstrated in keloid fibroblasts but not in normal fibroblasts isolated from tissues of one patient. Our current result reveals a post-transcriptional regulation of TEM1 by IGF-1 in skin fibroblasts via Akt/mTOR pathway. Previous studies show that TEM1 could enhance downstream signaling of PDGF and TGFβ. Therefore, we suggested that IGF-1 post-transcriptionally increased TEM1 protein expression, which may further enhance the response of PDGF and TGFβ in keloid fibroblasts.

    Chapter Page Abstract in Chinese I Abstract in English II Acknowledgement IV Contents V List of figures VI Abbreviation VII Reagents IX Introduction 1 Specific Aim 6 Results 7 Conclusion 12 Discussion 13 Materials and Methods 17 Reference 32 Figures 38 Appendixes 51

    Andrews, J. P., Marttala, J., Macarak, E., Rosenbloom, J., & Uitto, J. (2016). Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment. Matrix Biol, 51, 37-46. doi:10.1016/j.matbio.2016.01.013
    Babu, S. S., Valdez, Y., Xu, A., O’Byrne, A. M., Calvo, F., Lei, V., & Conway, E. M. (2014). TGFβ-mediated suppression of CD248 in non-cancer cells via canonical Smad-dependent signaling pathways is uncoupled in cancer cells. BMC Cancer, 14(1), 113.
    Bartis, D., Crowley, L. E., D'Souza, V. K., Borthwick, L., Fisher, A. J., Croft, A. P., . . . Thickett, D. R. (2016). Role of CD248 as a potential severity marker in idiopathic pulmonary fibrosis. BMC Pulm Med, 16(1), 51. doi:10.1186/s12890-016-0211-7
    Becker, R., Lenter, M. C., Vollkommer, T., Boos, A. M., Pfaff, D., Augustin, H. G., & Christian, S. (2008). Tumor stroma marker endosialin (Tem1) is a binding partner of metastasis-related protein Mac-2 BP/90K. FASEB J, 22(8), 3059-3067. doi:10.1096/fj.07-101386
    Bettinger, D. A., Yager, D. R., Diegelmann, R. F., & Cohen, I. K. (1996). The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plastic and reconstructive surgery, 98(5), 827-833.
    Blackstock, C. D., Higashi, Y., Sukhanov, S., Shai, S. Y., Stefanovic, B., Tabony, A. M., . . . Delafontaine, P. (2014). Insulin-like growth factor-1 increases synthesis of collagen type I via induction of the mRNA-binding protein LARP6 expression and binding to the 5' stem-loop of COL1a1 and COL1a2 mRNA. J Biol Chem, 289(11), 7264-7274. doi:10.1074/jbc.M113.518951
    Brady, J., Neal, J., Sadakar, N., & Gasque, P. (2004). Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. Journal of Neuropathology & Experimental Neurology, 63(12), 1274-1283.
    Chan, R. K., Liu, P. H., Pietramaggiori, G., Ibrahim, S. I., Hechtman, H. B., & Orgill, D. P. (2006). Effect of recombinant platelet-derived growth factor (Regranex) on wound closure in genetically diabetic mice. J Burn Care Res, 27(2), 202-205. doi:10.1097/01.BCR.0000202898.11277.58
    Chin, G. S., Liu, W., Peled, Z., Lee, T. Y., Steinbrech, D. S., Hsu, M., & Longaker, M. T. (2001). Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plastic and reconstructive surgery, 108(2), 423-429.
    Chitnis, M. M., Yuen, J. S., Protheroe, A. S., Pollak, M., & Macaulay, V. M. (2008). The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res, 14(20), 6364-6370. doi:10.1158/1078-0432.CCR-07-4879
    Christian, S., Ahorn, H., Koehler, A., Eisenhaber, F., Rodi, H. P., Garin-Chesa, P., . . . Lenter, M. C. (2001). Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem, 276(10), 7408-7414. doi:10.1074/jbc.M009604200
    Christian, S., Winkler, R., Helfrich, I., Boos, A. M., Besemfelder, E., Schadendorf, D., & Augustin, H. G. (2008). Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol, 172(2), 486-494. doi:10.2353/ajpath.2008.070623
    Daian, T., Ohtsuru, A., Rogounovitch, T., Ishihara, H., Hirano, A., Akiyama-Uchida, Y., . . . Yamashita, S. (2003). Insulin-like growth factor-I enhances transforming growth factor-beta-induced extracellular matrix protein production through the P38/activating transcription factor-2 signaling pathway in keloid fibroblasts. J Invest Dermatol, 120(6), 956-962. doi:10.1046/j.1523-1747.2003.12143.x
    Deangelis, T., Ferber, A., & Baserga, R. (1995). Insulin‐like growth factor I receptor is required for the mitogenic and transforming activities of the platelet‐derived growth factor receptor. Journal of cellular physiology, 164(1), 214-221.
    Fang, R. C., & Galiano, R. D. (2008). A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics: targets & therapy, 2(1), 1.
    Fujiwara, M., Muragaki, Y., & Ooshima, A. (2005). Upregulation of transforming growth factor-beta1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity. Arch Dermatol Res, 297(4), 161-169. doi:10.1007/s00403-005-0596-2
    Gerstberger, S., Hafner, M., & Tuschl, T. (2014). A census of human RNA-binding proteins. Nat Rev Genet, 15(12), 829-845. doi:10.1038/nrg3813
    Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008). RNA‐binding proteins and post‐transcriptional gene regulation. FEBS letters, 582(14), 1977-1986.
    Haisa, M., Okochi, H., & Grotendorst, G. R. (1994). Elevated Levels of PDGF α Receptors in Keloid Fibroblasts Contribute to an Enhanced Response to PDGF. Journal of Investigative Dermatology, 103(4), 560-563. doi:10.1111/1523-1747.ep12396856
    Judith, R., Nithya, M., Rose, C., & Mandal, A. B. (2010). Application of a PDGF-containing novel gel for cutaneous wound healing. Life Sci, 87(1-2), 1-8. doi:10.1016/j.lfs.2010.05.003
    Jumper, N., Paus, R., & Bayat, A. (2015). Functional histopathology of keloid disease. Histol Histopathol, 30(9), 1033-1057. doi:10.14670/HH-11-624
    Kendall, R. T., & Feghali-Bostwick, C. A. (2014). Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol, 5, 123. doi:10.3389/fphar.2014.00123
    MacFadyen, J. R., Haworth, O., Roberston, D., Hardie, D., Webster, M. T., Morris, H. R., . . . Isacke, C. M. (2005). Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett, 579(12), 2569-2575. doi:10.1016/j.febslet.2005.03.071
    Maia, M., DeVriese, A., Janssens, T., Moons, M., Lories, R. J., Tavernier, J., & Conway, E. M. (2011). CD248 facilitates tumor growth via its cytoplasmic domain. BMC Cancer, 11(1), 162.
    Mogler, C., Wieland, M., Konig, C., Hu, J., Runge, A., Korn, C., . . . Augustin, H. G. (2015). Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol Med, 7(3), 332-338. doi:10.15252/emmm.201404246
    Novosyadlyy, R., Dudas, J., Pannem, R., Ramadori, G., & Scharf, J. G. (2006). Crosstalk between PDGF and IGF-I receptors in rat liver myofibroblasts: implication for liver fibrogenesis. Lab Invest, 86(7), 710-723. doi:10.1038/labinvest.3700426
    Ohradanova, A., Gradin, K., Barathova, M., Zatovicova, M., Holotnakova, T., Kopacek, J., . . . Pastorek, J. (2008). Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2. Br J Cancer, 99(8), 1348-1356. doi:10.1038/sj.bjc.6604685
    Ohtsuru, A., Yoshimoto, H., Ishihara, H., Namba, H., & Yamashita, S. (2000). Insulin-like growth factor-I (IGF-I)/IGF-I receptor axis and increased invasion activity of fibroblasts in keloid. Endocrine journal, 47(SupplMarch), S41-S44.
    Park, S. A., Raghunathan, V. K., Shah, N. M., Teixeira, L., Motta, M. J., Covert, J., . . . Murphy, C. J. (2014). PDGF-BB does not accelerate healing in diabetic mice with splinted skin wounds. PLoS One, 9(8), e104447. doi:10.1371/journal.pone.0104447
    Phan, T., See, P., Tran, E., Nguyen, T., Chan, S., Lee, S., & Huynh, H. (2003). Suppression of insulin‐like growth factor signalling pathway and collagen expression in keloid‐derived fibroblasts by quercetin: its therapeutic potential use in the treatment and/or prevention of keloids. British Journal of Dermatology, 148(3), 544-552.
    Rettig, W. J., Garin-Chesa, P., Healey, J. H., Su, S. L., Jaffe, E. A., & Old, L. J. (1992). Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proceedings of the National Academy of Sciences, 89(22), 10832-10836.
    Shih, B., Garside, E., McGrouther, D. A., & Bayat, A. (2010). Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen, 18(2), 139-153. doi:10.1111/j.1524-475X.2009.00553.x
    Siddle, K. (2011). Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol, 47(1), R1-10. doi:10.1530/JME-11-0022
    Smith, S. W., Croft, A. P., Morris, H. L., Naylor, A. J., Huso, D. L., Isacke, C. M., . . . Buckley, C. D. (2015). Genetic Deletion of the Stromal Cell Marker CD248 (Endosialin) Protects against the Development of Renal Fibrosis. Nephron, 131(4), 265-277. doi:10.1159/000438754
    Smith, S. W., Eardley, K. S., Croft, A. P., Nwosu, J., Howie, A. J., Cockwell, P., . . . Savage, C. O. (2011). CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney Int, 80(2), 199-207. doi:10.1038/ki.2011.103
    Tomkowicz, B., Rybinski, K., Foley, B., Ebel, W., Kline, B., Routhier, E., . . . Zhou, Y. (2007). Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proceedings of the National Academy of Sciences, 104(46), 17965-17970.
    Tomkowicz, B., Rybinski, K., Sebeck, D., Sass, P., Nicolaides, N. C., Grasso, L., & Zhou, Y. (2014). Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling. Cancer Biology & Therapy, 9(11), 908-915. doi:10.4161/cbt.9.11.11731
    Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Monthouel-Kartmann, M. N., & Van Obberghen, E. (2005). Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I. Mol Endocrinol, 19(5), 1304-1317. doi:10.1210/me.2004-0239
    Valdez, Y., Maia, M., & M Conway, E. (2012). CD248: reviewing its role in health and disease. Current drug targets, 13(3), 432-439.
    Wynn, T. A. (2007). Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest, 117(3), 524-529. doi:10.1172/JCI31487
    Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. J Pathol, 214(2), 199-210. doi:10.1002/path.2277
    Yoon, J. H., & Gorospe, M. (2016). Identification of mRNA-Interacting Factors by MS2-TRAP (MS2-Tagged RNA Affinity Purification). Methods Mol Biol, 1421, 15-22. doi:10.1007/978-1-4939-3591-8_2
    Yoshimoto, H., Ishihara, H., Ohtsuru, A., Akino, K., Murakami, R., Kuroda, H., . . . Yamashita, S. (1999). Overexpression of insulin-like growth factor-1 (IGF-I) receptor and the invasiveness of cultured keloid fibroblasts. The American journal of pathology, 154(3), 883-889.

    無法下載圖示 校內:2023-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE