簡易檢索 / 詳目顯示

研究生: 何容
He, Rong
論文名稱: 無人機之視覺3D建圖與強健定位系統關鍵技術開發
Development of Key Technologies for 3D Mapping and Robust Localization with Vision for UAVs
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 無衛星訊號環境導航視覺同時定位與地圖構建技術雙眼視覺關鍵幀雙眼平行式追蹤與建圖系統
外文關鍵詞: GPS denied environments, VSLAM, Stereo vision, Keyframe, S-PTAM
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,無人機的應用越來越廣泛,並藉著成熟的飛行控制技術讓無人機逐漸走向應用層面。在這些眾多應用中,定位系統作為一種底層技術,多數應用皆建築其上。因此強健與精準之定位系統是所有無人機應用所追求的性能,以確保在任何情況下達成任務。目前室外無人機過度依賴GPS 定位訊號,而GPS 定位訊號易受干擾,且無法在室內使用,直接影響了無人機的性能表現,也侷限其應用場景。本研究選用深度量測範圍比商用RGB-D 相機更大的雙眼相機系統進行無人機強健定位系統的開發,並基於雙眼平行式追蹤與建圖結構(Stereo Parallel Tracking and Mapping,S-PTAM)進行設計與分析。
    由於視覺定位系統在進行觀測時,皆會引入雜訊。為了提高定位強健度,本研究透過慣性測量單位(Inertial Measurement Unit, IMU)量測三軸加速度的資訊,並開發基於移動窗口的靜置偵測演算法,藉此反算精準的初始尤拉角,建立精準視覺定位系統與IMU的初始關係。以Mahony 演算法進行姿態解算,依其結果對視覺定位系統進行位姿預補償(Pre-Compensation)。本文並提出以關鍵幀之間的偏航角(Yaw)與位移差做為決策指標開發匹配閥值的調適律。最後,以EuRoC 資料集進行本文提出之演算法的驗證與成果分析。

    The purpose of this paper is to construct a Visual Simultaneous Localization and Mapping (VSLAM) system that based on stereo vision and Inertial Measurement Unit (IMU). So that UAVs can navigate safely in GPS denied environments. And take improving precision, robustness, and versatility as the main research goals.
    System based on Stereo Parallel Tracking and Mapping (S-PTAM) is used in this paper. And the overall system consists of two parts, tracking thread and mapping thread which are operated in parallel. Among tracking thread, covisibility and frustum culling are used to select local map. Then through the feature matching and bundle adjustment, estimating camera pose can be achieved. And triangulation algorithm is used to build the map points with stereo image in mapping thread. Finally, the process of optimizing map is executed which can help maintain the accuracy of the map.
    In addition to visual information, IMU information is used in this paper in order to provide more accurate initial value for bundle adjustment. In this way, the robustness and positioning frequency of whole system can be improved. According to the difference of displacement and yaw angle between the keyframes, this paper develops online conditional threshold algorithm which will adjustment matching threshold automatically. Finally, whole system is verified by EuRoC dataset.

    論文摘要 i ABSTRACT iii 本文誌謝 xii 本文目錄 xiii 表目錄 xv 圖目錄 xvi 參數表 xx 第1 章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻資料回顧 2 1.4 論文架構 4 第2 章 座標系統與姿態估算 5 2.1 資料集介紹與座標定義 5 2.2 相機模型建模 15 2.3 特徵與特徵匹配 22 2.4 光束法平差 24 2.5 評估指標 29 第3 章 視覺同步定位與建圖系統 30 3.1 S-PTAM 之追蹤線程 31 3.2 S-PTAM 之建圖線程 34 第4 章 靜置偵測與線上條件閥值演算法 42 4.1 靜置偵測演算法 42 4.2 IMU 位姿解算 49 4.3 線上條件閥值演算法 58 第5 章 結論與未來展望 72 參考文獻 74 附錄A 四元數導數推導 76 附錄B 三角化非零近似解推導 78 附錄C EuRoC 的IMU 資料內容 80 附錄D 離散型低通濾波器推導 85

    [1] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. Jacobo Berlles, "SPTAM: Stereo Parallel Tracking and Mapping," Robotics and Autonomous Systems, vol. 93, pp. 27-42, 2017/07/01/ 2017.
    [2] G. Conte and P. Doherty, "An Integrated UAV Navigation System Based on Aerial Image Matching," in 2008 IEEE Aerospace Conference, 2008, pp. 1-10.
    [3] M. Shan, F. Wang, F. Lin, Z. Gao, Y. Z. Tang, and B. M. Chen, "Google map aided visual navigation for UAVs in GPS-denied environment," in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, pp. 114-119.
    [4] T. Yang, P. Li, H. Zhang, J. Li, and Z. Li, "Monocular Vision SLAM-Based UAV Autonomous Landing in Emergencies and Unknown Environments," Electronics, vol. 7, no. 5, p. 73, 2018.
    [5] F. Andert and L. Mejias, "Improving monocular SLAM with altimeter hints for fixed-wing aircraft navigation and emergency landing," in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 1008-1016.
    [6] K. Sun et al., "Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight," IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 965-972, 2018.
    [7] R. Gomez-Ojeda, F. Moreno, D. Zuñiga-Noël, D. Scaramuzza, and J. Gonzalez-Jimenez, "PL-SLAM: A Stereo SLAM System Through the Combination of Points and Line Segments," IEEE Transactions on Robotics, vol. 35, no. 3, pp. 734-746, 2019.
    [8] X. Li, Y. Li, E. P. Örnek, J. Lin, and F. Tombari, "Co-Planar Parametrization for Stereo-SLAM and Visual-Inertial Odometry," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6972-6979, 2020.
    [9] W. Chen, L. Zhu, X. Lin, Y. Guan, L. He, and H. Zhang, "Dynamic Strategy of Keyframe Selection with PD Controller for VSLAM Systems," IEEE/ASME Transactions on Mechatronics, pp. 1-1, 2021.
    [10] M. Burri et al., "The EuRoC micro aerial vehicle datasets," The International Journal of Robotics Research, vol. 35, no. 10, pp. 1157-1163, 2016/09/01 2016.
    [11] S. Jianbo and Tomasi, "Good features to track," in 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994, pp. 593-600.
    [12] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "BRIEF: Binary Robust Independent Elementary Features," in Computer Vision – ECCV 2010, Berlin, Heidelberg, 2010, pp. 778-792: Springer Berlin Heidelberg.
    [13] X. Gao, T. Zhang, Y. Liu, and Q. Yan, 14 Lectures on Visual SLAM: From Theory to Practice. Publishing House of Electronics Industry, 2017.
    [14] uoip (2018) stereo_ptam [Source code]. https://github.com/uoip/stereo_ptam.
    [15] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel, "A complementary filter for attitude estimation of a fixed-wing UAV," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 340-345.

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE