| 研究生: |
王釋央 Wang, Shi-Yang |
|---|---|
| 論文名稱: |
探討氮轉移試劑的化學選擇性及其官能基耐受性 The Investigation on the Chemoselectivity and Functional Group Tolerance of the N-Transfer Reagent |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 氮轉移試劑 、重氮化合物 、重氮鹽 、三氮烯 |
| 外文關鍵詞: | N-tranfer reagent, diazo compound, diazonium salt, triazene |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用實驗室所發展之氮轉移試劑針對較敏感的官能基進行耐受度及化學選擇性之測試──重氮鹽與胺類反應形成中間體三氮烯,藉由三氮烯的裂解取得重氮化合物 (Scheme 2)。
重氮化合物具有廣泛的應用性,在先前的研究中,雖然重氮化合物的合成已發展出多種方法,但多數條件及反應所需起始物仍受到許多限制,例如它們反應的起始物需要經過多步的合成,或者高危險性的條件如強氧化劑、強酸、強鹼等等條件才能取得,這些方法相對耗時且不易操作,由於條件嚴苛的問題,導致重氮化合物合成之結構因此受到局限,難以合成出多樣的產物,為了解決以上問題,本實驗室致力於發展、設計出一種較溫和且可廣泛利用的方法,進而改善先前合成的問題。
本實驗室已發展了一種新穎的試劑,可將胺基逕轉為重氮化合物的氮轉移試劑,也已經對此試劑之性質及穩定性深入探討,然而在本篇論文中,為了更進一步的瞭解此試劑條件下胺類的官能基耐受度,我們利用新一代的氮轉移試劑進行反應之測試,將已確定穩定於此反應的N-Boc-glycine-N-benzylamide作為基本架構,藉此延伸出多種具有較敏感官能基的反應物,以此方法來了解各種官能基在反應條件中的穩定性及試劑對於不同官能基與胺類之間的化學選擇性。
從實驗結果來看,此試劑及反應條件都相當溫和,對帶有不同敏感之官能基均表現相當穩定的產率,每個例子都維持70%以上不錯的產率,也在實驗中發現了一些反應對於不同官能基可能產生的問題並且做了一些改善,以便於此試劑運用於多種化合物及更廣泛的領域中。
In this essay, we used the N-transfer reagent our laboratory developed to test the tolerance and chemoselectivity of functional groups that are more sensitive. The main idea is based on the decomposition of the intermediate, triazene, which is formed by diazonium salt reacting with amine, to obtain the diazo (Scheme 1).
Although there are many different pathways to synthesize the diazo compounds, most conditions and substrates are still limited. In these methods, some conditions are harsh, and some require specific structures. For example, their substrates require more steps for synthesis or dangerous conditions such as reactive oxidants, strong acid and strong base. The reasons above result to the limitation of diazo, making it difficult to synthesize various structures. Therefore, we dedicate to designing a milder method that can be widely applied to various fields.
Our laboratory developed a novel N-transfer reagent for directly converting amines into diazo compounds. We also explored the properties and stabilities of the reagent. Moreover, we want to further understand the tolerance of the functional groups under our reaction condition. We used the stable N-transfer reagent to demonstrate our reactions, and chose N-Boc-glycine-N-benzylamide, which is stable in our reactions, as the basic skeleton. Also, substrates with more sensitive functional groups derived from this skeleton. By this method, we can understand the stability of various functional groups in our reaction condition, and the chemoselectivity between amine and different functional groups of the reagent.
The reaction presented excellent results and gave good yields over 70%. We also made some improvements on the problems we encountered, so that this reagent can be applied to multiple structures and more extensive fields.
1. Griess, P., European Journal of Organic Chemistry 1858, 106 (1), 123-125.
2. Wikipedia contributors Diazo. https://en.wikipedia.org/w/index.php?title=Diazo&oldid=899971648 (accessed 19 June 2019 03:47 UTC).
3. Di, M.; Rein, K. S., Aza analogs of kainoids by dipolar cycloaddition. Tetrahedron Letters 2004, 45 (24), 4703-4705.
4. Yang, J.; Wang, J.; Huang, H.; Qin, G.; Jiang, Y.; Xiao, T., gem-Difluoroallylation of Aryl Diazoesters via Catalyst-Free, Blue-Light-Mediated Formal Doyle–Kirmse Reaction. Organic Letters 2019, 21 (8), 2654-2657.
5. Büchner-Curtius-Schlotterbeck Reaction. In Comprehensive Organic Name Reactions and Reagents, pp 567-569.
6. Buchner, E.; Curtius, T., Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther. European Journal of Inorganic Chemistry 1885, 18 (2), 2371-2377.
7. Curtius, T., Ueber die Einwirkung von salpetriger Säure auf salzsauren Glycocolläther. European Journal of Inorganic Chemistry 1883, 16 (2), 2230-2231.
8. Kirmse, W., 100 Years of the Wolff Rearrangement. European Journal of Organic Chemistry 2002, 2002 (14), 2193-2256.
9. Thap Do, M.; Strausz, O. P., Cycloaddition of ethoxyketene to olefins. Journal of the American Chemical Society 1970, 92 (6), 1766-1768.
10. Becker, D.; Birnbaum, D., Intramolecular photoaddition of ketenes to conjugated cycloalkenones. The Journal of Organic Chemistry 1980, 45 (4), 570-578.
11. Corey, E. J.; Arnold, Z.; Hutton, J., Total synthesis of prostaglandins E2 and F2α () via a tricarbocyclic intermediate. Tetrahedron Letters 1970, 11 (4), 307-310.
12. Wang, Y.; Zhu, S., Convenient Synthesis of Polyfunctionalized β-Fluoropyrroles from Rhodium(II)-Catalyzed Intramolecular N−H Insertion Reactions. Organic letters 2003, 5 (5), 745-748.
13. Takasu, N. Diazo-mediated Metal Carbenoid Chemistry ~Recent Developments of Variety Bond Formation Methods~. http://www.f.u-tokyo.ac.jp/~kanai/seminar/pdf/Lit_Takasu_D2.pdf.
14. Wikipedia contributors Carbene. https://en.wikipedia.org/w/index.php?title=Carbene&oldid=901904337 (accessed 19 June 2019 04:04 UTC).
15. Rowlands, G. Carbenes and Carbene Complexes I. http://www.massey.ac.nz/~gjrowlan/adv/lct6.pdf.
16. Rowlands, G. Carbenes and Carbene Complexes II. http://www.massey.ac.nz/~gjrowlan/adv/lct7.pdf.
17. Wikipedia contributors Transition metal carbene complex. https://en.wikipedia.org/w/index.php?title=Transition_metal_carbene_complex&oldid=896876149 (accessed 19 June 2019 04:05 UTC).
18. Cardin, D. J.; Cetinkaya, B.; Lappert, M. F., Transition metal-carbene complexes. Chemical Reviews 1972, 72 (5), 545-574.
19. Takasu, N., Diazo-mediated Metal Carbenoid Chemistry. 2011.
20. Zhao, X.; Zhang, Y.; Wang, J., Recent developments in copper-catalyzed reactions of diazo compounds. Chem Commun (Camb) 2012, 48 (82), 10162-73.
21. Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A., Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chemical Reviews 2015, 115 (18), 9981-10080.
22. Maas, G., New syntheses of diazo compounds. Angew Chem Int Ed Engl 2009, 48 (44), 8186-95.
23. Ruano, J. L.; Peromingo, M. T.; Alonso, M.; Fraile, A.; Martin, M. R.; Tito, A., 1,3-dipolar cycloadditions of diazoalkanes to activated sulfoxides: influence of Lewis acids. J Org Chem 2005, 70 (22), 8942-7.
24. Harmata, M.; Lee, D. R.; Barnes, C. L., Stereospecific synthesis of dienones via a torquoselective retro-Nazarov reaction. Org Lett 2005, 7 (9), 1881-3.
25. Chou, H.-H.; Raines, R. T., Conversion of Azides into Diazo Compounds in Water. Journal of the American Chemical Society 2013, 135 (40), 14936-14939.
26. Myers, E. L.; Raines, R. T., A phosphine-mediated conversion of azides into diazo compounds. Angew Chem Int Ed Engl 2009, 48 (13), 2359-63.
27. Regitz Diazo Transfer. In Comprehensive Organic Name Reactions and Reagents, pp 2322-2325.
28. Goddard-Borger, E. D.; Stick, R. V., An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org Lett 2007, 9 (19), 3797-800.
29. Zhang, J.; Chen, W.; Huang, D.; Zeng, X.; Wang, X.; Hu, Y., Tandem Synthesis of alpha-Diazoketones from 1,3-Diketones. J Org Chem 2017, 82 (17), 9171-9174.
30. Regitz, D. D. M., New Methods of Preparative Organic Chemistry†. Transfer of Diazo Groups. angew Chem Int Ed 1967, 6 (9), 733-749.
31. Holton, T. L.; Schechter, H., Advantageous Syntheses of Diazo Compounds by Oxidation of Hydrazones with Lead Tetraacetate in Basic Environments. The Journal of Organic Chemistry 1995, 60 (15), 4725-4729.
32. Baumgarten, R. J., Aliphatic Deaminations in Organic Synthesis. Journal of Chemicol Educaiian 1966, 43 (398-408).
33. Baumgarten, R. J., Preparation of ethyl diazoacetate via a triazene intermediate. The Journal of Organic Chemistry 1967, 32 (2), 484-485.
34. Saeki, T.; Son, E.-C.; Tamao, K., 2-Methoxy-4-nitrobenzenediazonium Salt as a Practical Diazonium-Transfer Agent for Primary Arylamines via Tautomerism of 1,3-Diaryltriazenes: Deaminative Iodination and Arylation of Arylamines without Direct Diazotization. Bulletin of the Chemical Society of Japan 2005, 78 (9), 1654-1658.
35. Schroen, M.; Bräse, S., Polymer-bound diazonium salts for the synthesis of diazoacetic esters. Tetrahedron 2005, 61 (51), 12186-12192.
36. Marchesi, F.; Turriziani, M.; Tortorelli, G.; Avvisati, G.; Torino, F.; De Vecchis, L., Triazene compounds: Mechanism of action and related DNA repair systems. Pharmacological Research 2007, 56 (4), 275-287.
37. Shafiekhani, H.; Hagh’goo, Z.; Bahar, S., Comparison of new optical sensor based on triazene ligand immobilized on PVC and triacetylcellulose membranes for Hg (II) Ion. Quarterly Journal of Iranian Chemical Communication 2019, 7 (Issue 1, pp. 1-124, Serial No. 22), 102-112.
38. Melardi, M. R.; Shamsi Mogoii, F. B.; Sajirani, A. B.; Gharamaleki, J. A.; Notash, B.; Rofouei, M. K., Synthesis, characterization and crystal structure of four new asymmetric triazene ligands: An example of linear HgII complex with Hg... π secondary bonding interactions. Journal of Chemical Sciences 2015, 127 (12), 2171-2181.
39. Wang, D.; Unold, J.; Bubrin, M.; Elser, I.; Frey, W.; Kaim, W.; Xu, G.; Buchmeiser, M. R., Ruthenium–Triazene Complexes as Latent Catalysts for UV-Induced ROMP. European Journal of Inorganic Chemistry 2013, 2013 (31), 5462-5468.
40. M, G. M.; Sakakura, T. T., Benzenediazonium Tetrafluoroborate. Encyclopedia of Reagents for Organic Synthesis 2001.
41. Koval’chuk, E. P.; Reshetnyak, O. V.; Kozlovs’ka, Z. Y.; Błażejowski, J.; Gladyshevs’kyj, R. Y.; Obushak, M. D., Mechanism of the benzenediazonium tetrafluoroborate thermolysis in the solid state. Thermochimica Acta 2006, 444 (1), 1-5.
42. Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M., Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem Rev 2006, 106 (11), 4622-43.
43. 呂官翰, 將胺基逕轉為重氮化合物的新穎氮轉移試劑開發. 國立成功大學碩士論文 2019, https://hdl.handle.net/11296/8n2tdw.
44. Behera, H.; Ramkumar, V.; Madhavan, N., Cation-Transporting Peptides: Scaffolds for Functionalized Pores? Chemistry – A European Journal 2015, 21 (28), 10179-10184.
45. Liu, L.; Li, J.; Ai, Y.; Liu, Y.; Xiong, J.; Wang, H.; Qiao, Y.; Liu, W.; Tan, S.; Feng, S.; Wang, K.; Sun, H.; Liang, Q., A ppm level Rh-based composite as an ecofriendly catalyst for transfer hydrogenation of nitriles: triple guarantee of selectivity for primary amines. Green Chemistry 2019, 21 (6), 1390-1395.
46. Haddenham, D.; Pasumansky, L.; DeSoto, J.; Eagon, S.; Singaram, B., Reductions of Aliphatic and Aromatic Nitriles to Primary Amines with Diisopropylaminoborane. The Journal of Organic Chemistry 2009, 74 (5), 1964-1970.
47. Guisado, C.; Waterhouse, J. E.; Price, W. S.; Jorgensen, M. R.; Miller, A. D., The facile preparation of primary and secondary amines via an improved Fukuyama–Mitsunobu procedure. Application to the synthesis of a lung-targeted gene delivery agent. Organic & Biomolecular Chemistry 2005, 3 (6), 1049-1057.
48. Balboni, G.; Salvadori, S.; Trapella, C.; Knapp, B. I.; Bidlack, J. M.; Lazarus, L. H.; Peng, X.; Neumeyer, J. L., Evolution of the Bifunctional Lead μ Agonist/δ Antagonist Containing the 2′,6′-Dimethyl-l-tyrosine−1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acid (Dmt−Tic) Opioid Pharmacophore. ACS Chemical Neuroscience 2010, 1 (2), 155-164.
49. Rabet, P. T. G.; Fumagalli, G.; Boyd, S.; Greaney, M. F., Benzylic C–H Azidation Using the Zhdankin Reagent and a Copper Photoredox Catalyst. Organic Letters 2016, 18 (7), 1646-1649.
50. Pramanik, S.; Ghorai, P., Trapping of Azidocarbenium Ion: A Unique Route for Azide Synthesis. Organic Letters 2014, 16 (8), 2104-2107.
51. Rossy, C.; Majimel, J.; Delapierre, M. T.; Fouquet, E.; Felpin, F.-X., Palladium and copper-supported on charcoal: A heterogeneous multi-task catalyst for sequential Sonogashira–Click and Click–Heck reactions. Journal of Organometallic Chemistry 2014, 755, 78-85.
52. Manetsch, R.; Zheng, L.; Reymond, M. T.; Woggon, W.-D.; Reymond, J.-L., A Catalytic Antibody against a Tocopherol Cyclase Inhibitor. Chemistry – A European Journal 2004, 10 (10), 2487-2506.
53. Shang, R.; Ji, D.-S.; Chu, L.; Fu, Y.; Liu, L., Synthesis of α-Aryl Nitriles through Palladium-Catalyzed Decarboxylative Coupling of Cyanoacetate Salts with Aryl Halides and Triflates. Angewandte Chemie International Edition 2011, 50 (19), 4470-4474.
54. Kitano, Y.; Manoda, T.; Miura, T.; Chiba, K.; Tada, M., A Convenient Method for the Preparation of Benzyl Isocyanides. Synthesis 2006, 2006 (03), 405-410.
校內:2025-08-12公開