簡易檢索 / 詳目顯示

研究生: 黃宇珩
Huang, Yu-Heng
論文名稱: 以第一原理計算研究鈦酸鉛電域穩定性及其複合電域壁導電機制
First-principles study of PbTiO3 domain stability and electrical conduction mechanisms of its complex domain wall
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 鈦酸鉛鐵電材料電域穩定性電域壁
外文關鍵詞: Lead titanate, Ferroelectrics, electrical domain stability, domain wall
相關次數: 點閱:77下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鉛(PbTiO3)因其鈣鈦礦結構具良好鐵電性質和機械性質,基於鈦酸鉛材料的開發利用廣泛見於現代科技產品,兼且產品發展訴求朝向輕量化、微型化,鈦酸鉛材料的潛力不斷的被討論與發掘。且由於技術與資訊科技與日具進的發展,更多樣化的需求產生,例如4k規格的影像處理編譯、軟體程式設計、機器學習甚至是區塊鍊挖礦,對於記憶體產品有更高規格的需求與期待,因此基於鈣鈦礦結構開發的電域記憶體開始展露頭角,越來越多的團隊投入相關的研究,並屢有實驗成品提出,最近Sharma P. 團隊更基於電域記憶體的原理開發出了新形式的電域壁記憶體,確保了元件裝置的穩定性和壽命的同時還有著更高的資訊儲存密度。要達到更高的儲存密度意味著對於電域壁最小穩定尺寸我們要有本質上的認識,因此本研究期望透過第一原理計算對期加以進行考量。並且此類通過電域壁導電性質運作的記憶體,導電的性質與機制尚未完全明朗,對應於此的計算工作也同時於本研究中展開,研究中兼顧謹慎的模型接面考量以及分子動力學模擬以進一步確認模型的穩定性。
    本研究成功以第一原理計算歸納出電域壁之最小穩定尺寸,並對於無空缺電域壁模型及氧空缺電域模型中的導電機制成功的進行各機制之模擬計算重現與總結。

    In this study, the minimum stable size of the domain wall is successfully calculated by first principles, and the mechanisms of the conductivity in the vacancy-free domain wall model and the oxygen vacancy domain model are successfully reproduced and summarized by simulations.

    摘要 I Abstract II 誌謝 XVIII 表目錄 XXII 圖目錄 XXIII 名詞對照表 XXVI 第一章 緒論 1 第二章 文獻回顧 3 2.1 鐵電材料之特性與應用 3 2.1.1鐵電效應 3 2.1.3鐵電材料應用 6 2.2鈦酸鉛材料性質及微結構 7 2.3電域壁元件與模擬模型相關文獻 8 2.3.1電域壁記憶體 8 2.3.2 電域壁導電機制 11 2.3.2.1 電域壁能帶結構改變 11 2.3.2.2 電域壁氧空缺累積 12 2.3.2.3 電域壁電荷累積 14 第三章 模擬基礎理論回顧 15 3.1第一原理計算 15 3.1.1密度泛函理論(DFT) 16 3.1.2 Kohn-Sham 定理與方程式 16 3.1.3交換關聯能-局部密度近似與廣義梯度近似 19 3.1.4贗式能 21 3.1.5週期性邊界條件 22 3.2分子動力學模擬(Molecular Dynamics, MD) 23 3.2.1 第一原理分子動力學模擬(First-principles molecular dynamics simulation) 23 3.2.2 Verlet演算法(Verlet algorithms) 24 3.2.3 Nosé-Hoover thermostat 26 第四章 物理模型與模擬設計 27 4.1 計算模擬實驗設計 27 4.1.1結構優化 28 4.2 建立電域壁模型 30 4.2.1 180度電域壁 30 4.2.2 90度電域壁 32 4.2.3 極化量及及化方向計算方法 33 第五章 結果與討論 42 5.1模型優化 42 5.1.1 鈦酸鉛晶胞優化 42 5.1.2 鈦酸鉛電域壁系統-電域接面考量 43 5.1.3 電域穩定性 45 5.2 Density of States,DOS 態密度分析 53 5.2.1 180度中性電域壁與強電域壁 53 5.2.2 分層partial DOS分析 55 5.3 Bader Charge 分析 58 5.4 氧空缺系統 60 5.4.1 DOS分析 60 5.4.2 氧空缺生成能 65 5.4.3 Bader Charge分析 66 第六章 結論 68 參考文獻 69

    [1] P. Sharma et al., "Nonvolatile ferroelectric domain wall memory," Science advances, vol. 3, no. 6, p. e1700512, 2017.
    [2] J. Seidel et al., "Conduction at domain walls in oxide multiferroics," Nature materials, vol. 8, no. 3, pp. 229-234, 2009.
    [3] P. S. Bednyakov, B. I. Sturman, T. Sluka, A. K. Tagantsev, and P. V. Yudin, "Physics and applications of charged domain walls," npj Computational Materials, vol. 4, no. 1, pp. 1-11, 2018.
    [4] A. Crassous, T. Sluka, A. K. Tagantsev, and N. Setter, "Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films," Nature nanotechnology, vol. 10, no. 7, pp. 614-618, 2015.
    [5] C. A. P. de Araujo and G. W. Taylor, "Integrated ferroelectrics," Ferroelectrics, vol. 116, no. 1, pp. 215-228, 1991.
    [6] M. Francombe, "Ferroelectric films and their device applications," Thin Solid Films, vol. 13, no. 2, pp. 413-433, 1972.
    [7] G. H. Haertling, "PLZT electrooptic materials and applications—a review," Ferroelectrics, vol. 75, no. 1, pp. 25-55, 1987.
    [8] G. H. Haertling, "Ferroelectric thin films for electronic applications," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 9, no. 3, pp. 414-420, 1991.
    [9] S. B. Lang, "Review of recent work on pyroelectric applications," Ferroelectrics, vol. 53, no. 1, pp. 189-196, 1984.
    [10] M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials. Oxford university press, 2001.
    [11] T. Shimada, K. Wakahara, Y. Umeno, and T. Kitamura, "Shell model potential for PbTiO3 and its applicability to surfaces and domain walls," Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 325225, 2008.
    [12] M. Fontana, H. Idrissi, G. Kugel, and K. Wojcik, "Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak," Journal of Physics: Condensed Matter, vol. 3, no. 44, p. 8695, 1991.
    [13] J. Gong et al., "Interactions of charged domain walls and oxygen vacancies in BaTiO3: a first-principles study," Materials Today Physics, vol. 6, pp. 9-21, 2018.
    [14] P. Bednyakov, B. Sturman, T. Sluka, A. Tagantsev, and P. Yudin, "Physics and applications of charged domain walls. npj Computational Materials 4: 65," ed, 2018.
    [15] G. Kresse and J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set," Physical review B, vol. 54, no. 16, p. 11169, 1996.
    [16] G. Kresse and J. Furthmüller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set," Computational materials science, vol. 6, no. 1, pp. 15-50, 1996.
    [17] P. Bultinck, H. De Winter, W. Langenaeker, and J. P. Tollenare, Computational medicinal chemistry for drug discovery. CRC Press, 2003.
    [18] W. Kohn, "Nobel Lecture: Electronic structure of matter—wave functions and density functionals," Reviews of Modern Physics, vol. 71, no. 5, p. 1253, 1999.
    [19] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, vol. 140, no. 4A, p. A1133, 1965.
    [20] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical review A, vol. 38, no. 6, p. 3098, 1988.
    [21] D. M. Ceperley and B. J. Alder, "Ground state of the electron gas by a stochastic method," Physical review letters, vol. 45, no. 7, p. 566, 1980.
    [22] I.-H. Lee and R. M. Martin, "Applications of the generalized-gradient approximation to atoms, clusters, and solids," Physical Review B, vol. 56, no. 12, p. 7197, 1997.
    [23] J. P. Perdew and W. Yue, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation," Physical review B, vol. 33, no. 12, p. 8800, 1986.
    [24] R. Iftimie, P. Minary, and M. E. Tuckerman, "Ab initio molecular dynamics: Concepts, recent developments, and future trends," Proceedings of the National Academy of Sciences, vol. 102, no. 19, pp. 6654-6659, 2005.
    [25] M. Born and J. R. Oppenheimer, "On the quantum theory of molecules," Сборник статей к мультимедийному электронному учебно-методическому комплексу по дисциплине «физика атома и атомных явлений»/отв. ред. Шундалов МБ; БГУ, Физический факультет, 1927.
    [26] R. Car and M. Parrinello, "Unified approach for molecular dynamics and density-functional theory," Physical review letters, vol. 55, no. 22, p. 2471, 1985.
    [27] L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical review, vol. 159, no. 1, p. 98, 1967.
    [28] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of chemical physics, vol. 76, no. 1, pp. 637-649, 1982.
    [29] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of chemical physics, vol. 81, no. 1, pp. 511-519, 1984.
    [30] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical review A, vol. 31, no. 3, p. 1695, 1985.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE