| 研究生: |
黃宇珩 Huang, Yu-Heng |
|---|---|
| 論文名稱: |
以第一原理計算研究鈦酸鉛電域穩定性及其複合電域壁導電機制 First-principles study of PbTiO3 domain stability and electrical conduction mechanisms of its complex domain wall |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 鈦酸鉛 、鐵電材料 、電域穩定性 、電域壁 |
| 外文關鍵詞: | Lead titanate, Ferroelectrics, electrical domain stability, domain wall |
| 相關次數: | 點閱:77 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鉛(PbTiO3)因其鈣鈦礦結構具良好鐵電性質和機械性質,基於鈦酸鉛材料的開發利用廣泛見於現代科技產品,兼且產品發展訴求朝向輕量化、微型化,鈦酸鉛材料的潛力不斷的被討論與發掘。且由於技術與資訊科技與日具進的發展,更多樣化的需求產生,例如4k規格的影像處理編譯、軟體程式設計、機器學習甚至是區塊鍊挖礦,對於記憶體產品有更高規格的需求與期待,因此基於鈣鈦礦結構開發的電域記憶體開始展露頭角,越來越多的團隊投入相關的研究,並屢有實驗成品提出,最近Sharma P. 團隊更基於電域記憶體的原理開發出了新形式的電域壁記憶體,確保了元件裝置的穩定性和壽命的同時還有著更高的資訊儲存密度。要達到更高的儲存密度意味著對於電域壁最小穩定尺寸我們要有本質上的認識,因此本研究期望透過第一原理計算對期加以進行考量。並且此類通過電域壁導電性質運作的記憶體,導電的性質與機制尚未完全明朗,對應於此的計算工作也同時於本研究中展開,研究中兼顧謹慎的模型接面考量以及分子動力學模擬以進一步確認模型的穩定性。
本研究成功以第一原理計算歸納出電域壁之最小穩定尺寸,並對於無空缺電域壁模型及氧空缺電域模型中的導電機制成功的進行各機制之模擬計算重現與總結。
In this study, the minimum stable size of the domain wall is successfully calculated by first principles, and the mechanisms of the conductivity in the vacancy-free domain wall model and the oxygen vacancy domain model are successfully reproduced and summarized by simulations.
[1] P. Sharma et al., "Nonvolatile ferroelectric domain wall memory," Science advances, vol. 3, no. 6, p. e1700512, 2017.
[2] J. Seidel et al., "Conduction at domain walls in oxide multiferroics," Nature materials, vol. 8, no. 3, pp. 229-234, 2009.
[3] P. S. Bednyakov, B. I. Sturman, T. Sluka, A. K. Tagantsev, and P. V. Yudin, "Physics and applications of charged domain walls," npj Computational Materials, vol. 4, no. 1, pp. 1-11, 2018.
[4] A. Crassous, T. Sluka, A. K. Tagantsev, and N. Setter, "Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films," Nature nanotechnology, vol. 10, no. 7, pp. 614-618, 2015.
[5] C. A. P. de Araujo and G. W. Taylor, "Integrated ferroelectrics," Ferroelectrics, vol. 116, no. 1, pp. 215-228, 1991.
[6] M. Francombe, "Ferroelectric films and their device applications," Thin Solid Films, vol. 13, no. 2, pp. 413-433, 1972.
[7] G. H. Haertling, "PLZT electrooptic materials and applications—a review," Ferroelectrics, vol. 75, no. 1, pp. 25-55, 1987.
[8] G. H. Haertling, "Ferroelectric thin films for electronic applications," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 9, no. 3, pp. 414-420, 1991.
[9] S. B. Lang, "Review of recent work on pyroelectric applications," Ferroelectrics, vol. 53, no. 1, pp. 189-196, 1984.
[10] M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials. Oxford university press, 2001.
[11] T. Shimada, K. Wakahara, Y. Umeno, and T. Kitamura, "Shell model potential for PbTiO3 and its applicability to surfaces and domain walls," Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 325225, 2008.
[12] M. Fontana, H. Idrissi, G. Kugel, and K. Wojcik, "Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak," Journal of Physics: Condensed Matter, vol. 3, no. 44, p. 8695, 1991.
[13] J. Gong et al., "Interactions of charged domain walls and oxygen vacancies in BaTiO3: a first-principles study," Materials Today Physics, vol. 6, pp. 9-21, 2018.
[14] P. Bednyakov, B. Sturman, T. Sluka, A. Tagantsev, and P. Yudin, "Physics and applications of charged domain walls. npj Computational Materials 4: 65," ed, 2018.
[15] G. Kresse and J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set," Physical review B, vol. 54, no. 16, p. 11169, 1996.
[16] G. Kresse and J. Furthmüller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set," Computational materials science, vol. 6, no. 1, pp. 15-50, 1996.
[17] P. Bultinck, H. De Winter, W. Langenaeker, and J. P. Tollenare, Computational medicinal chemistry for drug discovery. CRC Press, 2003.
[18] W. Kohn, "Nobel Lecture: Electronic structure of matter—wave functions and density functionals," Reviews of Modern Physics, vol. 71, no. 5, p. 1253, 1999.
[19] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, vol. 140, no. 4A, p. A1133, 1965.
[20] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical review A, vol. 38, no. 6, p. 3098, 1988.
[21] D. M. Ceperley and B. J. Alder, "Ground state of the electron gas by a stochastic method," Physical review letters, vol. 45, no. 7, p. 566, 1980.
[22] I.-H. Lee and R. M. Martin, "Applications of the generalized-gradient approximation to atoms, clusters, and solids," Physical Review B, vol. 56, no. 12, p. 7197, 1997.
[23] J. P. Perdew and W. Yue, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation," Physical review B, vol. 33, no. 12, p. 8800, 1986.
[24] R. Iftimie, P. Minary, and M. E. Tuckerman, "Ab initio molecular dynamics: Concepts, recent developments, and future trends," Proceedings of the National Academy of Sciences, vol. 102, no. 19, pp. 6654-6659, 2005.
[25] M. Born and J. R. Oppenheimer, "On the quantum theory of molecules," Сборник статей к мультимедийному электронному учебно-методическому комплексу по дисциплине «физика атома и атомных явлений»/отв. ред. Шундалов МБ; БГУ, Физический факультет, 1927.
[26] R. Car and M. Parrinello, "Unified approach for molecular dynamics and density-functional theory," Physical review letters, vol. 55, no. 22, p. 2471, 1985.
[27] L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical review, vol. 159, no. 1, p. 98, 1967.
[28] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of chemical physics, vol. 76, no. 1, pp. 637-649, 1982.
[29] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of chemical physics, vol. 81, no. 1, pp. 511-519, 1984.
[30] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical review A, vol. 31, no. 3, p. 1695, 1985.