簡易檢索 / 詳目顯示

研究生: 劉承恩
Liu, Cheng- En
論文名稱: 空氣對廢氣之管式復熱器熱液動分析
Analysis of Flow Field and Thermal-Hydraulic Characteristics for Air to Exhaust Gas Tube Recuperator
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 130
中文關鍵詞: 螺旋片一字片熱輻射復熱器壓降熱液動
外文關鍵詞: longitudinal strip, radiation, twisted tape inserts, Thermal–hydraulic characteristics, recuperator, pressure drop
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討管式復熱器管內及管外之熱液動分析,管外部份,考慮管排間的熱輻射效應以及工作流體性質,藉以評估復熱器管外之熱效率;管內部份,探討管內不同插入物在不同流速下的熱傳及壓降,插入物型式包括一字片、一字片打洞、三角柱、圓柱及三種螺旋片插入物(螺旋角度分別為α=15.3°、24.4°與34.3°)。

    由數值結果可得知管內不同插入物的熱傳係數與單位管長壓降,與裸管比較的結果,一字片、一字片打洞、三角柱、圓柱、螺旋片-A (α=15.3°) 、螺旋片-B (α=24.4°) 與螺旋片-C (α=34.3°)的熱傳係數分別比裸管高5-16%、12-27%、3-16%、3-19%、6-32%、12-43%與25-61%;壓降則分別比裸管高90-140%、220-250%、130-160%、200-350%、130-170%、240-280%與290-330%。

    由數值結果的平均熱傳係數與實驗結果比較,裸管,一字片、一字片打洞、三角柱、圓柱以及螺旋片-A (α=15.3°)與實驗誤差分別約在3.6%、4.1%、4.5%、6.9%、4.8%以及1.4%~8.5%以下。此外,使用螺旋片-A的面積縮減率可達到20%。

    The thermal-hydraulic characteristics for both inside and outside tubes of a recuperator were discussed in this study. The radiation effect was considered between the tube wall and the working fluid for evaluating the outside tube performance. For inside tube, the heat transfer and pressure drop data for turbulent flow were discussed for different kinds of tube inserts including longitudinal strip inserts with and without holes and twisted-tape inserts with varied twist angle (α=15.3o, 24.4o and 34.3o).

    Form the simulation results, it is found that the heat transfer coefficient of the tube bank with strip inserts, strip inserts with holes, triangular prism, circular cylinder and twisted-tape inserts of α=15.3o, 24.4o, and 34.3o are respectively 5-16%, 12-27%, 3-16%, 3-19%, 6-32%, 12-43% and 25-61% than those for tube bank without using inserts. And pressure drop are respectively 90-140%, 220-250%, 130-160%, 200-350%, 130-170%, 240-280% and 290-330% than those for tube bank without using inserts.

    The numerical results of heat transfer coefficient for tube bank without using inserts, strip inserts without and with holes, triangular prism, circular cylinder, and twisted-tape inserts (α=15.3o) are respectively agreed with the experimental data within 3.6%, 4.1%, 4.5%, 6.9%, 4.8% and 8.5%. Furthermore, the results indicate that it is possible to obtain a reduction in area of approximately 20%.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 目錄…………………………………………………………………III 目錄…………………………………………………………………IV 表目錄………………………………………………………………VI 圖目錄………………………………………………………………IX 符號說明…………………………………………………………XIV 第一章 緒論…………………………………………………………1 1-1 前言…………………………………………………1 1-2 文獻回顧……………………………………………2 第二章 理論方析…………………………………………………14 2-1 基本假設………………………………………………14 2-2 統御方程式……………………………………………14 2-3 紊流模式………………………………………………15 2-4 輻射熱傳………………………………………………16 2-5 邊界條件………………………………………………17 2-6 熱傳係數、摩擦係數、壓力係數、摩擦因子及熱傳因子計算…21 2-7 熱交換器之性能評估方法……………………………24 2-8 工作流體及管壁熱物理性質…………………………25 第三章 數值方法…………………………………………………39 3-1 收斂條件……………………………………………40 3-2 格點產生……………………………………………40 3-3 格點測試……………………………………………42 第四章 實驗測試…………………………………………………55 4-1 實驗模組之系統結構及設備………………………55 4-2 測試樣品尺寸與種類………………………………57 4-3 實驗步驟……………………………………………57 4-4 實驗數據之計算公式…………………………………58 第五章 結果與討論………………………………………………67 5-1 管外部份……………………………………………67 5-2 管內部分……………………………………………71 第六章 結論………………………………………………………119 6-1 管外部份…………………………………………119 6-2 管內部分…………………………………………119 參考文獻…………………………………………………………121 附錄 A:廢氣物理性質之方程式………………………………125

    1.Antuf’yev, W. M. and Kozachenko, L. S., Sovietskove kotlotur-bostroyeniye No. 5, 1937.
    2.Bergles, A. E., “Principles of Heat Transfer Augmentation ”, Heat Exchangers, Thermal-Hydraulic Fundamentals and Design, Hemisphere Publishing, New York, pp. 819-842, 1981.
    3.Bergles, A. E. and Joshi, S. D., “Augmentation Techniques for Low Reynolds Number In-Tube Flow, in Low Reynolds Number Flow Heat Exchangers”, Hemisphere Publishing Corp., Washington, D.C., pp.694-720, 1983.
    4.CFD-ACE(U), CFD Research Corporation, Alabama, USA, 2003.
    5.Chieng, C. C. and Launder, B. E., “On the Calculation of Turbulent Heat Transport Downstream from an Abrupt Pipe Expansion”, Numerical Heat Transfer, Vol. 3, pp.189-207, 1980.
    6.Colburn, A. P. and King, W. J., “Relationship between Heat Transfer and Pressure Drop”, Industrial and Engineering Chemistry, Vol. 23, No. 8, pp.910-923, 1931.
    7.Colebrook, C. F., “Turbulent Flow in Pipes with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws”, Journal of the Institute of Civil Engineers London, Vol. 11, 1939.
    8.Dhaubhadel, M. N., Reddy, J. N., and Telionis, D. P., “Penalty Finite Element Analysis of Coupled Fluid Flow and Heat Transfer for In-Line Bundle of Cylinders in Cross Flow”, J. Nonlinear Mech., Vol.21, pp.361-373, 1986.
    9.Eckert, E. R. G. and Drake, R. M., Analysis of Heat and Mass Transfer, McGraw-Hill, New York, 1972.
    10.Fiveland, W. A., “Three Dimensional Radiative Heat-Transfer Solutions by the Discrete Ordinates Method”, Journal of Thermophysics and Heat Transfer. 2.4(Oct 1988): 309-316, 1988.
    11.Fujii, M., Fujii, T., and Nagata, T., “A Numerical Analysis of Laminar Flow and Heat Transfer of Air in an In-Line Tube Banks”, Numerical Heat Transfer, Vol.7, pp.89-102, 1984.
    12.Gnielinski, V., “New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow”, Int. Chem. Eng., Vol. 16, 359-367, 1976.
    13.Grimison, E. D., “Correlation and Utilization of New Data on Flow Resistance and Heat Transfer for Cross Flow of Gases Over Tube Banks”, Trans. ASME, Vol. 59, pp.583-594, 1937.
    14.Jayaraj, D., Masilamani, J. G., and Seetharamu, K. N., “Heat Transfer Augmentation by Tube Inserts in Heat Exchangers”, SAE Technical Paper 891983, 1989.
    15.Kays, W. M. and Perkins, H. C., in Rohsenow, W. M., Hartnett, J. P., and Ganic, E. N. (Editors), Handbook of Heat Transfer, Fundamentals, Chap. 7, McGraw-Hill, New York, 1985.
    16.Krishne Y. T., Patnaik, B. S., Aswatha, P. A., and Seetharamu, K. N., “Finite Element Simulation of Transient Laminar Flow and Heat Transfer Past an In-Line Tube Bank”, Int. J. Heat and Fluid Flow, Vol. 19, pp.49-55, 1998.
    17.Kuznetsov, N. V. and Lokshin, V. A., Teplo S. No. 10, pp. 19, 1937.
    18.Launder, B. E. and Spalding, A. D., “Mathematical Models of Turbulence”, Chap. 5, pp. 90-100, Academic, London, 1972.
    19.Launder, B. E. and Massey, T. H., “The Numerical Prediction of Viscous Flow and Heat Transfer in Tube Banks”, J. of Heat Transfer (ASME),Vol. 100, pp.565-571, 1978.
    20.Le Feuvre, R. F., “Laminar and Turbulent Forced Convection Processes through In-Line Tube Banks”, Imperial College London, Mechanical Engineering Department, HTS/74/5, 1973.
    21.Maezawa, S. and Lock, G. S. H., “Heat Transfer inside a Tube with a Novel Promoter”, Proceedings of the 6th International Heat Transfer Conference, Vol. 2. pp. 434-600, 1978.
    22.Manglik, R. M. and Bergles, A. E., Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part I—Laminar Flows, in Enhanced Heat Transfer, Pate, M. B. and Jensen, M. K. (Editors), ASME Symposium, Vol. HTD-Vol. 202, ASME, New York, pp.89-98, 1992a.
    23.Manglik, R. M. and Bergles, A. E., Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows, in Enhanced Heat Transfer, Pate, M. B. and Jensen, M. K. (Editors), ASME Symposium, Vol. HTD-Vol. 202, ASME, New York, pp.99-106, 1992b.
    24.Moody, L. F., “Friction Factors for Pipe Flow”, Transactions of the ASME, Vol. 66, 1944.
    25.Norris, R. H., in Bergles, A. E. and Webb, R. L. (Editors), Augmentation of Convective Heat and Mass Transfer, ASME, New York, pp.16-26, 1970.
    26.Petukhov, B. S., in Irvine, T. F. and Hartnett, J. P. (Editors), Advances in Heat Transfer, Vol. 6, Academic Press, New York, pp. 504-564, 1970.
    27.Shah, R. K. and London, A. L., Laminar Flow Forced Convection in Ducts, Academic Press, New York, 1978.
    28.Shah, R. K. and Bhatti, M. S., in Kakac, S., Shah, R. K., and Aung, W. (Editors), Handbook of Single-Phase Convective Heat Transfer, Chap. 3, Wiley-Interscience, New York, 1987.
    29.Shah, R. K. and Joshi, S. D., in Handbook of Single-Phase Convective Heat Transfer, Chap. 5, Wiley-Interscience, New York, 1987.
    30.Sleicher, C. A. and Rouse, M. W., “A Convenient Correlation for Heat Transfer to Constant and Variable Property Fluids in Turbulent Pipe Flow”, Int. J. Heat and Mass Transfer, vol. 18, pp. 677-683, 1975.
    31.Smithberg, E. and Landis, F., “Friction and Forced Convection Heat Transfer Characteristics in Tubes with Twisted Tape Swirl Generators”, Journal of Heat Transfer, Vol.87,pp.39-49, 1964.
    32.Thom, A. and Apelt, C. J., “Field Computation in Engineering and Physics”, Van Nortrand, London, 1961.
    33.Thoman, D. C. and Szewczyk, A. A., “ Time-Dependent Viscous Flow Over a Circular Cylinder”, Physics of Fluids, SupplementⅡ, pp.Ⅱ-76 ~ pp.Ⅱ-86, 1969.
    34.Thomas, F. I. and Peter, E. L., “Steam and gas Tables with Computer Equations”, 1st ed., Academic Press, 1984.
    35.Thompson, J. F., Numerical Grid Generation Foundations and Applications, North Holland, New York, 1985.
    36.Thorsen, R. and Landis, F., “Friction and Heat Transfer Characteristics in Turbulent Swirl Flow Subjected to Large Transverse Temperature Gradients” , Journal of Heat Transfer, Vol. 90, pp.87-89, 1968.
    37.Vargaftik, N. B., Tables of Thermophysical Properties of Liquids and Gases, 2nd ed., Hemisphere Publishing, New York, 1975.
    38.Webb, R. L., in Kakac, S., Shah, R. K., and Aung, W. (Editors), Handbook of Single-Phase Convective Heat Transfer, Chap. 17, Wiley-Interscience, New York, 1987.
    39.Webb, R. L., Principles of Enhanced Heat Transfer, John Wiley & Sons, Inc., 1994.
    40.Wung, T. S. and Chen, C. J., “Finite Analytic Solution of Convection Heat Transfer for Tube Arrays in Crossflow : Part 1—Flow Field Analysis”, J. of Heat Transfer (ASME), Vol.111, pp.633-640, 1989.
    41.Wung, T. S. and Chen, C. J., “Finite Analytic Solution of Convection Heat Transfer for Tube Arrays in Crossflow : Part 2—Flow Field Analysis”, J. of Heat Transfer (ASME), Vol.111,pp.641-648, 1989.
    42.Xie, L., Gu, R., and Zhang, X., “A Study of the Optimum Inserts for Enhancing Convective Heat Transfer of High Viscosity Fluid in a Tube”, In Multiphase Flow and Heat Transfer, Second International Symposium, Vol. 1, Chen, X. J., Veziroglu, T. N., and Tien, C. L. (Editors), Hemisphere Publishing Corp., New York, pp.649-656, 1922.
    43.Zdravistch, F., Fletcher, C. A. J., and Behnia, M., “Laminar and Turbulent Heat Transfer Predictions in Tube Bank in Cross Flow”, International Conference on Fluid and Thermal Energy Conversion, pp.29-34, 1994.
    44.Zukauskas, A., “Heat Transfer from Tubes in Crossflow”, Advances in Heat Transfer Vol. 18, pp.87-159, 1987.

    下載圖示 校內:立即公開
    校外:2007-06-28公開
    QR CODE