簡易檢索 / 詳目顯示

研究生: 黃若琳
Huang, Ruo-Lin
論文名稱: 二氧化錳與錳/鐵氧化物之合成與應用
Synthesis and application of MnO2 and MnO2/FeOOH
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 109
中文關鍵詞: 二氧化錳鐵氧化物錳/鐵氧化物吸附三價砷
外文關鍵詞: manganese dioxide, iron oxide, Mn/Fe oxide, adsorption, arsenite
相關次數: 點閱:133下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對亞錳離子(Mn2+),首先利用次氯酸化學氧化法合成二氧化錳(MnO2),並藉由增加次氯酸劑量以提升產率。產物以XRD、EDS做定性分析,確認所合成二氧化錳為ε-MnO2(Akhtenskite),以BET儀器測得其比表面積為95.27 m2/g,以雷射界面電位分析儀分析此材料之pHzpc = 3.4 0.5。
    在應用方面,本研究將上述合成的ε-MnO2應用於降解雙氧水與礦化草酸。研究結果顯示,針對10 mM之雙氧水,使用0.1 g/L之ε-MnO2即可於20分鐘內達99 %的去除率,動力為二階反應,反應速率常數 = 3.352 M-1•s-1;另一方面,使用1 g/L之ε-MnO2可於2小時內礦化99 %濃度為2.45 mM之草酸。
    接下來,本研究試圖將次氯酸氧化亞錳離子所得的二氧化錳披覆於鐵氧化物-FeOOH(BT9)表面,以合成核殼型的錳/鐵雙成分氧化物(MBT9)。研究發現藉由改變次氯酸劑量與反應時間,可控制二氧化錳於MBT9表面之披覆量,當HOCl/Mn = 10(莫耳比)時,反應6小時以後,其錳/鐵莫耳比約為18 %。錳/鐵莫耳比會跟隨氧化劑量的減少而降低,當HOCl/Mn = 1時,反應6小時以後,錳/鐵莫耳比下降至2%。
    最後,本研究試圖將上述一系列不同錳/鐵含量的MBT9應用於吸附除三價砷(As(III))與五價砷(As(V))實驗中,發現除砷效果受錳/鐵含量的影響,有其最適值錳/鐵莫耳比約為9 %(M9BT9),故後續的研究以此做為除砷的吸附劑,發現As(III)去除效率隨增加M9BT9劑量而提升,5 g/L M9BT9之用量可使10 ppm之As(III)在20小時內降至0.01 ppm以下,符合WHO飲用水標準的要求。在吸附動力方面符合二階吸附動力模式(R2 = 0.99),在等溫吸附實驗中較符合Langmuir Model(R2 = 0.99),研究結果顯示M9BT9對於As(III)最大吸附量為32.2 mg/g大於改質前的BT9對As(III)的最大吸附量(21.79 mg/g),推測原因為M9BT9表層披覆的二氧化錳可以將As(III)氧化成As(V),進而被BT9所吸附;但M9BT9對於As(V)的最大吸附量為18.7 mg/g反而小於改質前的BT9對As(V)的最大吸附量(26.9 mg/g),推測其原因為表面電位,BT9(pHzpc =6)於反應過程中(pH = 3),表面電位為帶正電性,相較M9BT9其表層二氧化錳(pHzpc =2.8)為帶負電或不帶電,BT9較易吸附帶負電的五價砷(H2AsO4-)。

    This work successfully synthesized manganese dioxide through the chemical oxidation of manganese ions (Mn(II)) by hypochlorous acid. The result showed that increasing hypochlorous acid will improve the oxidation yield of manganese dioxide. The XRD patterns confirmed that the manganese dioxide majorly consisted of Akhtenskite (ε-MnO2) phase. The BET surface area of the manganese dioxide, determined by N2 adsorption, was 95.27 m2/g . The pHzpc of the manganese dioxide determined using a zeta potential meter was 3.4 0.5.
    To examine the synthetic manganese dioxides’ capability of acting as a catalyst and an oxidant. The experiments of hydrogen peroxide degradation and oxalic acid mineralization were then carried out. The 10 mM of hydrogen peroxide could be degraded by 0.1 g of ε-MnO2 in 20 minutes. The degradation of hydrogen peroxide was a second-order reaction and the reaction rate constant ( ) was 3.352 M-1•s-1. The 2.425 mM of oxalic acid also could be mineralized by 1 g of ε-MnO2 in 2 hours.
    On the other hand, a novel multi-functional MBT9 was prepared by deposition of the manganese dioxide onto an iron oxide, BT9; the amounts of deposition were optimized by the ratio of hypochlorous acid to manganese (II) (HOCl/Mn). By jar-test process, a maximum molar ratio of Mn to Fe was 0.18 by adjusting HOCl/Mn to 10. As HOCl/Mn was decreased to 1, the molar ratio of Mn to Fe was declined to 0.02. The manganese dioxide on MBT9 that underwent an additional oxidation of As (III) could substantially enhance the arsenic adsorption. M9BT9 with a 0.09 molar ratio of Mn to Fe could attain a maximum adsorption amount of As (III), 32.2 mg/g. The As (III) adsorption using M9BT9 followed a second-order behavior. The sorption isotherms could be well fitted with Langmuir model, revealing that As(III) adsorption capacity of M9BT9 was 32.2 mg/g, higher than that of BT9 (21.79 mg/g). The As (V) adsorption capacity of M9BT9 was 18.7 mg/g which was lower than that of BT9 (26.9 mg/g). High capacity of M9BT9 for As (III) was attributed to the surface manganese dioxide capable of oxidizing As (III) to As (V); however, low capacity of M9BT9 for As (V) was due to the relatively low surface potential than BT9.

    第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 3 第二章 文獻回顧 4 2-1 重金屬錳之性質 4 2-1-1 錳氧化物之簡介 4 2-1-2 錳氧化物之特性 5 2-1-3 錳之氧化動力學 7 2-2 重金屬鐵之性質 9 2-2-1 鐵氧化物之簡介 9 2-2-2 鐵氧化物表面化學特性 11 2-2-3 鐵氧化物BT系列之性質介紹 14 2-3 砷之介紹 16 2-3-1 砷的來源 16 2-3-2 環境中砷的特性 17 2-3-3 水中常用之除砷技術 20 2-4 吸附理論 23 2-4-1 吸附種類 23 2-4-2 動力吸附模式 24 2-4-3 等溫吸附模式 25 第三章 實驗設備、材料與方法 31 3-1 研究架構及流程 31 3-2 實驗設備 34 3-2-1 以Jar-test(凝集試驗機)進行變因探討 34 3-2-2 以流體化床合成產物 34 3-3 實驗藥品 35 3-4 儀器分析 35 3-4-1 X光繞射分析(XRD) 35 3-4-2 高解析度電子顯微鏡(SEM) 37 3-4-3 X光能量散佈分析儀(EDS) 38 3-4-4 原子吸收光譜儀(AAS) 39 3-4-5 感應耦合電漿原子發射光譜儀(ICP-OES) 39 3-4-6 紫外-可見分光光度計 40 3-5 實驗步驟 40 3-5-1 合成二氧化錳 40 3-5-2 合成二氧化錳之應用 40 3-5-3 合成MBT9 41 3-5-4 MBT9應用於除砷 41 第四章 結果與討論 42 4-1 利用化學法-次氯酸氧化亞錳離子合成二氧化錳 42 4-1-1 pHi值對合成反應之影響 43 4-1-2 固定pH值對於合成反應之影響 46 4-1-3 不同次氯酸比對於合成反應之影響 48 4-1-4 合成二氧化錳之物性分析 50 4-2 合成二氧化錳之應用 54 4-2-1 應用於雙氧水之降解 54 4-2-2 應用二氧化錳礦化草酸 58 4-3 製備錳/鐵氧化吸附觸媒(MBT9) 60 4-3-1 吸附材BT9之物性介紹 60 4-3-2 以不同粒徑級BT底材合成MBT9 64 4-3-3 次氯酸劑量對於合成MBT9之影響 67 4-3-4 利用FBR合成MBT9 70 4-3-5 合成MBT9之物性分析 73 4-4 MBT9應用於去除三價砷 77 4-4-1 比較吸附材對於處理As(III)和As(V)之差異 77 4-4-2 比較不同MnO2覆蓋量之MBT9處理As(III) 80 4-4-3 不同MBT9劑量對吸附As(III)之影響 82 4-4-4 吸附動力學之探討 84 4-4-5 等溫吸附曲線 87 第五章 結論與建議 91 5-1 結論 91 5-1-1 以次氯酸氧化法合成二氧化錳 91 5-1-2 二氧化錳降解雙氧水與礦化草酸 91 5-1-3 以次氯酸氧化法披覆二氧化錳製備MBT9 92 5-1-4 應用MBT9吸附除砷 92 5-2 建議 93 參考文獻 94 附錄A、緩衝劑對合成反應之影響 100 附錄B、BT9對AS(III/V)最大吸附量 103 附錄C、MBT9對AS(V)最大吸附量 107

    [1] Z. Lu, K. Lin, and J. Gan, "Oxidation of bisphenol F (BPF) by manganese dioxide," Environmental Pollution, vol. 159, pp. 2546-51, 2011.
    [2] R. McKenzie, "The adsorption of lead and other heavy metals on oxides of manganese and iron," Soil Research, vol. 18, pp. 61-73, 1980.
    [3] Y. H. Huang, Y. J. Shih, and C. C. Chang, "Adsorption of fluoride by waste iron oxide: the effects of solution pH, major coexisting anions, and adsorbent calcination temperature," Journal of Hazardous Materials, vol. 186, pp. 1355-9, 2011.
    [4] Y. H. Huang, Y. J. Shih, C. C. Chang, and S. H. Chuang, "A comparative study of phosphate removal technologies using adsorption and fluidized bed crystallization process," Desalination and Water Treatment, vol. 32, pp. 351-356, 2011.
    [5] N. Ajith, A. A. Dalvi, K. K. Swain, P. S. Devi, B. B. Kalekar, R. Verma, "Sorption of As(III) and As(V) on chemically synthesized manganese dioxide," Journal of Environment Science and Health, Part A: Toxic/ Hazardous Substances and Environmental Engineering, vol. 48, pp. 422-8, 2013.
    [6] G. Zhang, J. Qu, H. Liu, R. Liu, and R. Wu, "Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal," Water Research, vol. 41, pp. 1921-8, 2007.
    [7] "環保署飲用水標準(98.11.26)."
    [8] R. Giovanoli and E. Stähli, "Oxide und Oxidhydroxide des drei-und vierwertigen Mangans," Chimia, vol. 24, pp. 49-61, 1970.
    [9] R. Giovanoli, "A simplified scheme for polymorphism in the manganese dioxides," Chimia, vol. 23, pp. 470-472, 1969.
    [10] S. H. Li, Q. H. Liu, L. Qi, L. H. Lu, and H. Y. Wang, "Progress in Research on Manganese Dioxide Electrode Materials for Electrochemical Capacitors," Chinese Journal of Analytical Chemistry, vol. 40, pp. 339-346, 2012.
    [11] O. Nilsen, S. Foss, H. Fjellvåg, and A. Kjekshus, "Effect of substrate on the characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition," Thin Solid Films, vol. 468, pp. 65-74, 2004.
    [12] Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, "Hydrothermal Growth of Manganese Dioxide into Three-Dimensional Hierarchical Nanoarchitectures," Advanced Functional Materials, vol. 16, pp. 549-555, 2006.
    [13] Q. Feng, H. Kanoh, and K. Ooi, "Manganese oxide porous crystals," Journal of Materials Chemistry, vol. 9, pp. 319-333, 1999.
    [14] C. M. Julien, M. Massot, and C. Poinsignon, "Lattice vibrations of manganese oxides Part I. Periodic structures," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 60, pp. 689-700, 2004.
    [15] M. Rossouw, D. Liles, M. Thackeray, W. David, and S. Hull, "Alpha manganese dioxide for lithium batteries: a structural and electrochemical study," Materials research bulletin, vol. 27, pp. 221-230, 1992.
    [16] M. Gray and M. Malati, "The point of zero charge of manganese dioxides," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 89, pp. 135-140, 1978.
    [17] T. W. Healy, A. Herring, and D. Fuerstenau, "The effect of crystal structure on the surface properties of a series of manganese dioxides," Journal of Colloid and Interface Science, vol. 21, pp. 435-444, 1966.
    [18] J. J. Morgan and W. Stumm, "Colloid-chemical properties of manganese dioxide," Journal of Colloid Science, vol. 19, pp. 347-359, 1964.
    [19] R. Taylor, "The association of manganese and cobalt in soils—further observations," Journal of Soil Science, vol. 19, pp. 77-80, 1968.
    [20] R. McKenzie, "The adsorption of molybdenum on oxide surfaces," Soil Research, vol. 21, pp. 505-513, 1983.
    [21] R. M. McKenzie, "The adsorption of lead and other heavy metal on oxides of manganese and iron," 1980.
    [22] R. McKenzie, "The reaction of cobalt with manganese dioxide minerals," Soil Research, vol. 8, pp. 97-106, 1970.
    [23] W. Stumm and J. Morgan, "Aquatic ChemistryWiley," New York, p. 780, 1981.
    [24] I. Bodek, W. Lyman, W. Reehl, and D. Rosenblatt, Environmental inorganic chemistry: properties, processes, and estimation methods: Pergamon press New York:, 1988.
    [25] J. E. V. B. a. W. Lin, "Kinetic Modeling of Manganese(II) Oxidation by Chlorine Dioxide and Potassium Permanganate," Environmental Science and Technology, 1992.
    [26] J. W. Murray, "The surface chemistry of hydrous manganese dioxide," Journal of Colloid and Interface Science, vol. 46, pp. 357-371, 1974.
    [27] J. J. Morgan, "Applications and limitations of chemical thermodynamics in natural water systems," Equilibrium Concepts in Natural Water Systems. RF Gould, editor. American Chemical Society, Washington, DC, pp. 1-29, 1967.
    [28] J. J. Morgan, "Chemical equilibria and kinetic properties of manganese in natural waters," Principles and applications of water chemistry, pp. 561-623, 1967.
    [29] O. J. Hao, A. P. Davis, and P. H. Chang, "Kinetics of manganese (II) oxidation with chlorine," Journal of environmental engineering, vol. 117, pp. 359-374, 1991.
    [30] U. Schwertmann and R. M. Taylor, "Iron oxides," in Minerals in soil environments, ed: Soil Science Society of America, 1989, pp. 379-438.
    [31] 賴進興, "氧化鐵覆膜濾砂吸附過濾水中銅離子之研究," 國立台灣大學環境工程研究所博士論文, 1995.
    [32] R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses: Wiley-Vch, 2003.
    [33] 孫嘉福 and 駱尚廉, "氧化鐵之特性與應用," ed: 自來水會刊雜誌, 1994.
    [34] Y. H. Huang, Y. J. Huang, H. C. Tsai, and H. T. Chen, "Degradation of phenol using low concentration of ferric ions by the photo-Fenton process," Journal of the Taiwan Institute of Chemical Engineers, vol. 41, pp. 699-704, 2010.
    [35] Y. H. Huang, Y. F. Huang, P. S. Chang, and C. Y. Chen, "Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton," Journal of Hazardous Materials, vol. 154, pp. 655-62, Jun 15 2008.
    [36] Y. J. Shih, C. P. Lin, and Y. H. Huang, "Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater," Separation and Purification Technology, vol. 104, pp. 100-105, 2013.
    [37] Y. H. Huang, H. T. Su, and L. W. Lin, "Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes," Journal of Environmental Sciences, vol. 21, pp. 35-40, 2009.
    [38] A. Myerson, Handbook of industrial crystallization: Butterworth-Heinemann, 2002.
    [39] E. G. Denk and G. D. Botsaris, "Fundamental studies in secondary nucleation from solution," Journal of Crystal Growth, vol. 13, pp. 493-499, 1972.
    [40] Y. H. Huang, Y. J. Shih, and F. J. Cheng, "Novel KMnO4-modified iron oxide for effective arsenite removal," Journal of Hazardous Materials, vol. 198, pp. 1-6, Dec 30 2011.
    [41] P. Smedley and D. Kinniburgh, "A review of the source, behaviour and distribution of arsenic in natural waters," Applied geochemistry, vol. 17, pp. 517-568, 2002.
    [42] S. R. Dzeng, S. L. chen, and M. H. Yang, "Arsenic Species in Groundwaters of the Blackfoot Disease Area, Taiwan," Environmental Science and Technology, 1994.
    [43] 王成財, "砷(As(V))在水化鐵、鋁氧化物表面吸附特性之研究," 國立成功大學環境工程學系碩士論文, 1990.
    [44] L. C. Maurizio Pettine, and Frank J. Millero, "Arsenite oxidation by H2O2 in aqueous solutions," Geochimica et Cosmochimica Acta, 1999.
    [45] A. A. Michael C. Dodd. Ngoc Duy Vu, Van Chieu Le. Reinhard Kissner, Hung Viet Pham, The Ha Cao, Michael Berg, and Urs Von Gunten., "Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine,chlorramines and ozone:relevance to drinking water treatment," Environmental Science and Technology, 2006.
    [46] H. A. Andrianisa, A. Ito, A. Sasaki, J. Aizawa, and T. Umita, "Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride," Water Research, vol. 42, pp. 4809-17, 2008.
    [47] M. I. Litter, M. E. Morgada, and J. Bundschuh, "Possible treatments for arsenic removal in Latin American waters for human consumption," Environmental Pollution, vol. 158, pp. 1105-18, 2010.
    [48] G. P. Miller, D. I. Norman, and P. L. Frisch, "A comment on arsenic species separation using ion exchange," Water Research, vol. 34, pp. 1397-1400, 2000.
    [49] S. Velizarov, J. o. G. Crespo, and M. A. Reis, "Removal of inorganic anions from drinking water supplies by membrane bio/processes," Reviews in Environmental Science and Bio/Technology, vol. 3, pp. 361-380, 2005.
    [50] C. M. Nguyen, S. Bang, J. Cho, and K.-W. Kim, "Performance and mechanism of arsenic removal from water by a nanofiltration membrane," Desalination, vol. 245, pp. 82-94, 2009.
    [51] P. Mondal, S. Bhowmick, D. Chatterjee, A. Figoli, and B. Van der Bruggen, "Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions," Chemosphere, vol. 92, pp. 157-70, 2013.
    [52] L. Wang, C. Wan, D. J. Lee, J. H. Tay, X. F. Chen, X. Liu, "Adsorption–desorption of strontium from waters using aerobic granules," Journal of the Taiwan Institute of Chemical Engineers, vol. 44, pp. 454-457, 2013.
    [53] Y. S. Ho, "Review of second-order models for adsorption systems," Journal of Hazardous Materials, vol. 136, pp. 681-9, 2006.
    [54] 吳榮宗, 工業觸媒概論, 1989.
    [55] 李明哲, 非均勻系觸媒反應的理論與應用, 1978.
    [56] J. Oakes and P. Gratton, "Kinetic investigations of the oxidation of arylazonaphthol dyes in hypochlorite solutions as a function of pH," Journal of the Chemical Society, Perkin Trans. 2, pp. 2201-2206, 1998.
    [57] M. Oliver J. Hao, ASCE, Allen P. Davis, Associate Member, ASCE, and Peter H. Chang, "Kinetics of manganese (II) oxidation with chlorine," 1991.
    [58] X. F. Shen, Y. S. Ding, S. Gomez, H. Luo, M. Aindow,and S. L. Suib, "Hydrothermal Growth of Manganese Dioxide into Three-Dimensional Hierarchical Nanoarchitectures," Advanced Functional Materials, vol. 16, pp. 549-555, 2006.
    [59] S. H. Do, B. Batchelor, H. K. Lee, and S. H. Kong, "Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism," Chemosphere, vol. 75, pp. 8-12, 2009.
    [60] L. Martin, M. Easton, J. Foster, and M. Hill, "Oxidation of hydroxymethanesulfonic acid by Fenton's reagent," Atmospheric Environment (1967), vol. 23, pp. 563-568, 1989.
    [61] J. J. Plgnatello, "Dark and Photoassisted Fe3+-Catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide," 1992.
    [62] C. Walling,T. Weil, "The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution," international Journal of Chemical Kinetics, vol. 6, pp. 507-516,1974.
    [63] S. Fukuzumi, N. Kitajima, and Y. Ono, "Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metal oxides," The Journal of Physical Chemistry, vol. 82, pp. 1505-1509,1978.
    [64] A. Wang and R. Valentine, "Hydrogen peroxide decomposition kinetics in the presence of iron oxides," ed: Technomic Publishing Co., Inc, 1993.
    [65] J. De Laat and H. Gallard, "Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling," Environmental science & technology, vol. 33, pp. 2726-2732, 1999.
    [66] F. J. Rivas, F. J. Beltran, Ramon Montero-de-Espinosa, "Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor," Applied Catalysis B: Environmental, vol. 39, pp. 221-231, 2002.
    [67] F. J. Rivas, F. J. Beltran, L. A. Fernandez, Pedro M. Alvarez, and Ramon Montero-de-Espinosa, "Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon," Industrial and Engineering Chemistry Research, vol. 41, pp. 6510-6517, 2002.
    [68] C. Arias, Joaquin F. Perez-Benito, and Elisenda Amat, "A Kinetic Study of the Reduction of Colloidal Manganese Dioxide by Oxalic Acid," Journal of Colloid and Interface Science, vol. 177, pp. 288-297, 1996.
    [69] J. J. Morgan, W. Stumm, "Colloid-chemical properties of manganese dioxide," Journal of Colloid Science, vol. 19, pp. 347-359, 1964.
    [70] D. Lakshmanan, D. A. Clifford, and G. Samanta, "Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation," Water Research, vol. 44, pp. 5641-52, 2010.
    [71] H. Nesbitt, G. Canning, and G. Bancroft, "XPS study of reductive dissolution of 7Aa-birnessite by H3AsO3, with constraints on reaction mechanism," Geochimica et Cosmochimica Acta, vol. 62, pp. 2097-2110, 1998.
    [72] W. Driehaus, R. Seith, and M. Jekel, "Oxidation of arsenate (III) with manganese oxides in water treatment," Water Research, vol. 29, pp. 297-305, 1995.
    [73] K. Wu, T. Liu, W. Xue, and X. Wang, "Arsenic(III) oxidation/adsorption behaviors on a new bimetal adsorbent of Mn-oxide-doped Al oxide," Chemical Engineering Journal, vol. 192, pp. 343-349, 2012.
    [74] J. R. Walker and T. H. Hayes, "Reaction scheme for the oxidation of As (III) to As (V) by birnessite," Clays and Clay Minerals, vol. 38, pp. 549-555, 1990.
    [75] L. Yu, X. Peng, F. Ni, J. Li, D. Wang, and Z. Luan, "Arsenite removal from aqueous solutions by gamma-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption," Journal of Hazardous Materials, vol. 246-247, pp. 10-7, 2013.

    下載圖示 校內:2015-07-26公開
    校外:2018-07-26公開
    QR CODE