簡易檢索 / 詳目顯示

研究生: 蘇皓偉
Su, Hao-Wei
論文名稱: 反算法用於主機板晶片未知熱源預測之實驗驗證
Experimental verification on the estimation of unknown heat generation of chips mounted on a PC board with inverse method
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 熱傳導與熱對流共軛之反算問題熱源預測晶片
外文關鍵詞: Conjugate Gradient Method, Inverse Heat Conduction, Convection Conjugated Problem
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子產品的普及和性能的提升,主機板晶片的散熱問題愈發嚴重,準確預測熱源位置及其強度對於提升電子產品的性能與可靠性至關重要。然而,由於主機板內部結構複雜且熱源分佈不均,傳統的熱源預測方法在實際應用中往往面臨挑戰。
    本研究使用使用共軛梯度法(Conjugate Gradient Method)搭配套裝軟體 CFD-ACE+,通過溫度場的測量數據反推出主機板晶片內部未知熱源的強度。方法的核心技術是利用測得的外部溫度分佈,逆向求解熱傳導方程,以推斷內部熱源的分佈情況。
    本論文第二章為模擬穩態熱傳導與熱對流共軛之反算問題於電熱片未知體積熱源之研究,在第二章將反算法之共軛梯度法運用在預測電熱片內部之熱傳及對流問題上,加入不同量測誤差並且使用不同風速進行預測,其結果顯示即使加入量測誤差並且提高風速預測結果仍然相當準確。
    第三章則是使用電熱片進行晶片發熱實驗驗證,將三塊不同尺寸及熱源之電熱片安裝在電路板上模擬主機板上晶片發熱情況,並且置於風洞中以不同風速進行強制對流實驗,再以紅外線熱像儀進行拍攝,觀測電熱片在不同風速流場中的發熱情況。再搭配熱像儀分析軟體TAS20,配合內差方法來擷取所需之溫度分佈,進而利用共軛梯度法(Conjugate Gradient Method)藉由平板上表面溫度與商業軟體CFD-ACE+,預測物體表面未知熱源。

    This research uses the Conjugate Gradient Method in conjunction with the software package CFD-ACE+ to infer the intensity of unknown heat sources inside a motherboard chip from temperature field measurement data. The core technique of the method involves using the measured external temperature distribution to inversely solve the heat conduction equation, thus deducing the distribution of internal heat sources. An experiment was conducted using electric heating films to verify chip heat generation. Three electric heating films of different sizes and heat sources were installed on a circuit board to simulate chip heat generation on a motherboard. The setup was placed in a wind tunnel for forced convection experiments at different wind speeds. Infrared thermal imaging was used to observe the heat generation of the electric heating films in different wind speed flow fields. Thermal imaging analysis software TAS20, combined with interpolation methods, was used to extract the required temperature distribution. The Conjugate Gradient Method, using the surface temperature of the flat plate and the commercial software CFD-ACE+, was then employed to predict the unknown heat sources on the object's surface.

    摘要 I 英文延伸摘要 III 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號說明 XIV 第一章 緒論 1 1-1 研究背景與目的 1 1-2 文獻回顧 3 第二章 印刷電路板上多個封裝晶片之未知熱源進行同時模擬預測 6 2-1 直接解問題(Direct Problem) 7 2-2 反算問題(Inverse Problem) 9 2-3 共軛梯度法之極小化過程(Conjugate Gradient Method for Minimization) 10 2-3.1 靈敏性問題與前進步距(Sensitivity Problem and SearchStep Size) 11 2-3.2 伴隨問題與梯度方程式(Adjoint Problem and Gradient Equation) 13 2-3.3 收斂條件(Stopping Criterion) 16 2-4 結果與討論 17 第三章 實驗驗證 47 3-1 實驗目的 47 3-2 實驗原理 47 3-3 實驗設備 48 3-3.1 不同規格電熱片之平板模型 48 3-3.2 紅外線熱像儀 48 3-3.3 風速計 49 3-3.4 開迴路吸入式風洞 50 3-4 實驗步驟 51 3-5 結果與討論 52 第四章 結論 64 參考文獻 65

    1. C. P. Wong and M. M. Wong, "Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics, " IEEE Trans. Components Pack. Technol. Vol 22, pp.21–25, 1999.
    2. Kijkanjanapaiboon, K., & M. Xie , & J. Zhou, & X.Fan. "Investigation of dimensional and heat source effects in Lock-In Thermography applications in semiconductor packages", Applied Thermal Engineering, Volume 113.673-683.2017
    3. H. J. Um, & S. M. Lee , & D. W. Lee, & S. G. Ha, &, H.S.Kim, "Mixed mode fracture toughness of epoxy molding compound/printed circuit board interface of semiconductor packages with respect to temperature and moisture", Engineering Fracture Mechanics, Volume 289,2023
    4. Z. Wang, & S. Zheng , & S.L. Xu, & Y.L.Dai, &,"Investigation on the thermal and hydrodynamic performances of a micro-pin fin array heat sink for cooling a multi-chip printed circuit board",Applied Thermal Engineering, Volume 239 ,2024
    5. R.K. Wu, & X.F. Zhang , & Y.W. Fan, & R. Hu, &, X.B. Luo, "A Bi-Layer compact thermal model for uniform chip temperature control with non-uniform heat sources by genetic-algorithm optimized microchannel cooling",International Journal of Thermal Sciences, Volume 136, Pages 337-346, 2019
    6. Sharma,C,S,& Tiwari,M,K, &Zimmermann,S, & Brunschwiler,T, & Schlottig,G, &Michel,B, &Poulikakos,D, "Energy efficient hotspot-targeted embedded liquid cooling of electronics",Applied Energy, Volume 138, Pages 414-422,2015
    7. W.F. Li,& N. Mao, &T.B. He, &J. M. Gong, "CFD simulation of novel adaptive pin-fins microchannel heat sink to improve thermal management of electronic chips",Applied Thermal Engineering, Volume 252,123667,2024
    8. Y.M.Chu, & Farooq, U, &,Mishra,N,K, & , Ahmad,Z, & , Zulfiqar,F, & ,Yasmin,S,&,Khan,S,A"CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: Applications in nano-energy thermal devices",Case Studies in Thermal Engineering,102818,2023
    9. C. H. Huang and S. C. Cheng, "Three-Dimensional Inverse Estimation of Heat Generation in Board Mounted Chips, " J. Thermophys. Heat Transfer, Vol 15, pp. 439–446, 2001.
    10. Huang, C.H., & Ju, T. M..,"An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine's exhaust value and seat", Int. J. Numerical Methods in Engineering,vol. 38, 735-754. 1995.
    11. Huang, C.H., & Tsai, C.C. "A transient inverse two-dimensional geometry problem in estimating time-dependent irregular boundary configurations", Int. J. Heat Mass Transf.vol. 41, 1707–1718. 1998.
    12. Huang, C.H., & Chung, Y.L. "An inverse problem in determining the optimum shapes for partially wet annular fins based on efficiency maximization", Int. J. Heat Mass Transf.vol. 90, 364–375. 2015.
    13. Lesnic, D., Yousef, S. A., & Ivanchov, M. "Determination of a time-dependent diffusivity from nonlocal conditions", Applied Mathematics and Computation,vol. 41, 301–320. 2013.
    14. Liu, F., & Ozisik, M. N. "Inverse analysis of transient turbulent forced convection inside parallel plate ducts". International journal of heat and mass transfer,vol. 39, 2615-2618. 1996.
    15. Hsu, P.T., Chen, C. K., & Yang, Y.T. "A 2-D inverse method for simultaneous estimation of the inlet temperature and wall heat flux in a laminar circular duct flow", Numerical Heat Transfer, Part A Applications,vol. 34, 731-745. 1998.
    16. VanderVeer, J.R., & Jaluria, Y. "Solution of an inverse convection problem by a predictor–corrector approach". International Journal of Heat and Mass Transfer,vol. 65, 123-130. 2013.
    17. Bangian-Tabrizi, A., & Jaluria, Y. "An optimization strategy for the inverse solution of a convection heat transfer problem", International Journal of Heat and Mass Transfer,vol. 124, 1147-1155. 2018.
    18. C. H. Huang, & Ozisik, M.N. "Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate duct", Numerical Heat Transfer, Part A,vol. 21, 55-70. 1992.
    19. C. H. Huang and S. P. Wang, “A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method,” Int. J. Heat and Mass Transfer, Vol 42, pp.3387-3403, 1999.
    20. C. H. Huang L. C. Jan, R. Li and A. J. Shih, “A Three-Dimensional Inverse Problem in Estimating the Applied Heat Flux of a Titanium Drilling,” Theoretical and Experimental Studies, Int. J. Heat and Mass Transfer, Vol 50, pp.3265-3277, 2007.
    21. C. H. Huang and H. C. Lo, “A Three-Dimensional Inverse Problem in Predicting the Heat Fluxes Distribution in the Cutting Tools”, Numerical Heat Transfer, part A-Applications, Vol 48, pp.1009-1034, 2005.
    22. O. M. Alifanov, “Solution of an Inverse Problem of Heat Conduction by Iteration Methods,” J. of Engineering Physics, Vol 26, pp.471-476, 1974.
    23. A. N. Tikhonov and V. Y. Aresenin, “Solution of ill posed problem,” V. H. Wistom&Sons, Washington, DC, 1997.

    無法下載圖示 校內:2026-08-01公開
    校外:2026-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE