簡易檢索 / 詳目顯示

研究生: 黃培秩
Huang, Pei-Zhi
論文名稱: 二硫化鉬電晶體及記憶體之研究
Molybdenum Disulfide Transistor and Memory Applications
指導教授: 涂維珍
Tu, Wei-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 115
中文關鍵詞: 二硫化鉬場效電晶體結晶性接觸電阻原子層蝕刻記憶體元件
外文關鍵詞: Molybdenum disulfide, Transistor, Crystallinity, Memory Device
相關次數: 點閱:62下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文的開頭,我們首先探討兩種製備二硫化鉬薄膜的方法,並發現由化學氣相沉積法所製備的二硫化鉬薄膜比起由濺鍍後硫化方式製備的薄膜在製作成電晶體後擁有著更好的元件表現。接下來,我們嘗試優化單層二硫化鉬電晶體的接觸金屬,將原本的銻替換為耐酸鹼腐蝕的金。實驗結果顯示,儘管金的功函數不匹配,其優秀的結晶性仍使其與半導體形成良好接觸,此外,我們還發現隨著提高接觸金屬的沉積溫度,接觸金屬的結晶性有逐漸增強的趨勢,且元件的接觸電阻也隨之降低使其性能獲得了提升。隨後將目光聚焦於多層二硫化鉬電晶體的應用上,我們透過直接成長方式與逐層轉印方式來製備多層二硫化鉬電晶體並相互比較兩者的特性,發現透過逐層轉印的方式,可以克服多層材料成長過程中上層材料成長可能導致下層材料受損的風險,從而獲得更好的元件特性。這種方法甚至能夠進一步構建參層二硫化鉬電晶體,不僅增加了載子通道數,還同時提升了電極與材料間的接觸品質,降低界面接觸電阻,使得元件性能顯著提升。藉由以上種種優化工作,本文在二硫化鉬底閘極場效電晶體的開態電流數值方面提升約238倍;場效電子遷移率則提升約172倍。觀察由逐層轉印製備的多層二硫化鉬電晶體元件,由於具備優良的接觸品質,因此多層薄膜內的電子濃度顯著提高,表示多層二維材料層內儲存的電荷數目大幅增加。藉此特點,我們進一步發展了二硫化鉬記憶體。通過蝕刻參層二硫化鉬薄膜的上層,形成孤立的二硫化鉬層作為電荷儲存層,並以下層二硫化鉬薄膜作為電荷傳輸層,構建了二硫化鉬記憶體。透過暫態曲線、讀寫循環曲線等量測方式,我們分析了元件的讀取維持時長、操作速度、操作電壓等,成功構築了一個只有寥寥幾個原子厚度的二維材料記憶體。

    In this thesis, we investigate two growth methods for Molybdenum disulfide (MoS₂) thin films and find that films prepared by chemical vapor deposition (CVD) exhibit superior characteristics compared to those prepared by post-sulfurization of sputtered films. Subsequently, we optimize single-layer MoS₂ transistors by replacing Sb/Au electrodes with gold (Au) due to its high resistance to acid and alkali corrosion. Both types of electrodes show similar device characteristics, attributed to gold's excellent crystalline properties. Further optimization by increasing the deposition temperature of the contact metal enhances its crystallinity, reduces contact resistance, and improves performance. For multi-layer MoS₂ transistors fabricated through sequential transferring method, significantly enhanced device performances are observed due to the increased number of carrier channels and the improved contact quality between the electrodes and the material. The on-state current of the MoS₂ bottom-gate field-effect transistor increased by 238 times and field-effect mobility by 172 times. Due to the excellent contact quality, the electron concentration within the multi-layer thin films significantly increases. Utilizing this phenomenon, we have developed MoS₂ memories. Through ALEs to create isolated MoS2 charge storage layers on top of the MoS2 channel, memory operations are observed for the device. We have demonstrated long storage times and write-read-erase-read cycles of the MoS2 memory. 2D material memories with thicknesses down to few atomic layers are demonstrated, which is advantageous for the further line width shrinkage of memory devices.

    摘要 i Abstract ii 目錄 vi 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 研究動機與論文架構 1 1.2 二硫化鉬晶體結構與基本性質 2 1.2.1 二硫化鉬之晶體結構 2 1.2.2 二硫化鉬之拉曼光譜分析 4 1.2.3 二硫化鉬之光激發螢光光譜分析 6 1.2.4 二硫化鉬之製備方式 6 1.3 銻烯之晶體結構與基本性質 8 1.3.1 銻烯之晶體結構與特性 9 1.3.2 銻烯之拉曼光譜分析 9 1.3.3 銻烯之X射線繞射分析 10 1.4 金之晶體結構與基本性質 12 1.4.1 金之晶體結構 12 1.4.2 金之X射線繞射分析 12 第二章 實驗儀器介紹 14 2.1 二硫化鉬薄膜成長系統 14 2.1.1 射頻濺鍍沉積系統 (Radio-Frequency Sputter System, RF Sputter) 14 2.1.2 硫化系統 (Sulfurization System) 16 2.1.3 化學氣相沉積系統 (Chemical Vapor Deposition System) 17 2.2 材料分析儀器 18 2.2.1 共軛焦拉曼光譜儀 (Confocal Raman Spectrum) 18 2.2.2 光激發螢光光譜儀 (Photoluminescence Spectrum) 20 2.2.3 X射線繞射分析儀 (X-Ray Diffraction, XRD) 21 2.3 電晶體及記憶體之製程設備與分析儀器 22 2.3.1 旋轉塗佈機 (Spin Coater) 22 2.3.2 曝光機 (Mask Aligner) 23 2.3.3 電子束蒸鍍沉積系統 (E-Beam Gun Evaporation) 24 2.3.4 反應式離子蝕刻系統 (Reactive-Ion Etching, RIE) 25 2.3.5 原子層沉積系統 (Atomic Layer Deposition, ALD) 26 2.3.6 原子層蝕刻系統 (Atomic Layer Etching, ALE) 28 2.3.7 元件三端點量測系統 (3 Terminal Device I-V Measurement System) 29 2.3.8 記憶體元件量測系統 (Memory Device Measurement System) 30 第三章 單層二硫化鉬電晶體之元件優化 32 3.1 不同成長方式製備單層二硫化鉬薄膜 32 3.1.1 由濺鍍後硫化方式成長二硫化鉬薄膜 32 3.1.2 由化學氣相沉積法成長二硫化鉬薄膜 35 3.1.3 不同方式製備之單層二硫化鉬薄膜特性比較 36 3.2 單層二硫化鉬底閘極場效電晶體元件製備 39 3.2.1 二硫化鉬薄膜轉印 (MoS2 Film Transferring) 39 3.2.2 定義源極及汲極 (Source & Drain Region Definition) 40 3.2.3 沉積接觸金屬 (Contact Metal Deposition) 41 3.2.4 定義通道區域 (Channel Region Definition) 42 3.2.5 沉積鈍化氧化層 (Passivating Oxide Layer Deposition) 43 3.3 不同成長方式製備之單層二硫化鉬電晶體元件特性分析 44 3.3.1 不同成長方式製備之單層二硫化鉬電晶體元件特性比較 46 3.4 不同接觸金屬條件之單層二硫化鉬電晶體元件特性分析 47 3.4.1 室溫下沉積不同接觸金屬之單層二硫化鉬電晶體元件特性分析 48 3.4.2 100℃下沉積不同接觸金屬之單層二硫化鉬電晶體元件特性分析 50 3.4.3 不同接觸金屬條件之單層二硫化鉬電晶體元件特性比較分析 51 3.4.4 不同溫度沉積金接觸金屬之單層二硫化鉬元件TLM量測分析 53 3.5 本章結論 56 第四章 多層二硫化鉬電晶體之元件優化 58 4.1 不同方式製備多層二硫化鉬薄膜 58 4.1.1 由直接成長方式製備多層二硫化鉬薄膜 59 4.1.2 由逐層轉印方式製備多層二硫化鉬薄膜 59 4.1.3 不同方式製備之雙層二硫化鉬薄膜特性比較 60 4.2 不同方式製備之雙層二硫化鉬電晶體元件特性分析 63 4.2.1 不同方式製備之雙層二硫化鉬電晶體元件特性比較 64 4.3 逐層轉印方式製備之多層二硫化鉬薄膜與電晶體元件特性分析 66 4.3.1 逐層轉印方式製備之參層二硫化鉬薄膜特性分析 66 4.3.2 逐層轉印方式製備之單/雙/參層二硫化鉬薄膜特性比較 67 4.3.3 逐層轉印方式製備之參層二硫化鉬電晶體元件特性分析 69 4.3.4 逐層轉印方式製備之單/雙/參層二硫化鉬電晶體元件特性比較 70 4.3.5 逐層轉印方式製備之單/雙/參層二硫化鉬電晶體元件TLM量測分析 72 4.4 本章結論 73 第五章 具孤立二硫化鉬電荷儲存層之二硫化鉬記憶體 75 5.1 二硫化鉬底閘極記憶體元件製備 75 5.1.1 二硫化鉬薄膜轉印 (MoS2 Film Transferring) 76 5.1.2 定義源極及汲極區域 (Source & Drain Region Definition) 77 5.1.3 二硫化鉬逐層蝕刻 (Atomic Layer Etching of MoS2) 78 5.1.4 沉積接觸金屬 (Contact Metal Deposition) 81 5.1.5 定義通道區域 (Channel Region Definition) 81 5.1.6 沉積鈍化氧化層 (Passivating Oxide Layer Deposition) 83 5.2 以IDS-VGS曲線分析記憶體元件之遲滯現象 84 5.3 以IDS-time暫態曲線分析記憶體元件之維持時長 85 5.4 以IDS-time讀寫循環曲線分析記憶體元件 87 5.4.1 以不同寫入/清除時間分析元件操作速度 88 5.4.2 以不同寫入/清除閘極偏壓分析元件最小操作偏壓 90 5.4.3 以不同讀取閘極偏壓優化元件1/0電流比 91 5.5 本章結論 91 第六章 總結 93 參考文獻 96

    [1] Schaller, R. R. (1997). Moore's law: past, present and future. IEEE spectrum, 34(6), 52-59.
    [2] Hisamoto, D., Lee, W. C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., ... & Hu, C. (2000). FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE transactions on electron devices, 47(12), 2320-2325.
    [3] Huang, C. Y., Dewey, G., Mannebach, E., Phan, A., Morrow, P., Rachmady, W., ... & Kavalieros, J. (2020, December). 3-D self-aligned stacked NMOS-on-PMOS nanoribbon transistors for continued Moore’s law scaling. In 2020 IEEE International Electron Devices Meeting (IEDM) (pp. 20-6). IEEE.
    [4] Mukesh, S., & Zhang, J. (2022). A review of the gate-all-around nanosheet FET process opportunities. Electronics, 11(21), 3589.
    [5] Loubet, N., Hook, T., Montanini, P., Yeung, C. W., Kanakasabapathy, S., Guillom, M., ... & Khare, M. (2017, June). Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In 2017 symposium on VLSI technology (pp. T230-T231). IEEE.
    [6] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
    [7] Schwierz, F., Pezoldt, J., & Granzner, R. (2015). Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 7(18), 8261-8283.
    [8] Chhowalla, M., Jena, D., & Zhang, H. (2016). Two-dimensional semiconductors for transistors. Nature Reviews Materials, 1(11), 1-15.
    [9] Roy, T., Tosun, M., Kang, J. S., Sachid, A. B., Desai, S. B., Hettick, M., ... & Javey, A. (2014). Field-effect transistors built from all two-dimensional material components. ACS nano, 8(6), 6259-6264.
    [10] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature nanotechnology, 6(3), 147-150.
    [11] Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 105(13), 136805.
    [12] Ganatra, R., & Zhang, Q. (2014). Few-layer MoS2: a promising layered semiconductor. ACS nano, 8(5), 4074-4099.
    [13] Zeng, H., & Cui, X. (2015). An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chemical Society Reviews, 44(9), 2629-2642.
    [14] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., ... & Wang, F. (2010). Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4), 1271-1275.
    [15] Ye, M., Winslow, D., Zhang, D., Pandey, R., & Yap, Y. K. (2015, March). Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. In Photonics (Vol. 2, No. 1, pp. 288-307). MDPI.
    [16] Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., & Ryu, S. (2010). Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 4(5), 2695-2700.
    [17] Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., & Chhowalla, M. (2011). Photoluminescence from chemically exfoliated MoS2. Nano letters, 11(12), 5111-5116.
    [18] Li, H., Wu, J., Yin, Z., & Zhang, H. (2014). Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of chemical research, 47(4), 1067-1075.
    [19] Huang, Y., Pan, Y. H., Yang, R., Bao, L. H., Meng, L., Luo, H. L., ... & Gao, H. J. (2020). Universal mechanical exfoliation of large-area 2D crystals. Nature communications, 11(1), 2453.
    [20] Gao, E., Lin, S. Z., Qin, Z., Buehler, M. J., Feng, X. Q., & Xu, Z. (2018). Mechanical exfoliation of two-dimensional materials. Journal of the Mechanics and Physics of Solids, 115, 248-262.
    [21] Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., ... & Nicolosi, V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331(6017), 568-571.
    [22] Smith, R. J., King, P. J., Lotya, M., Wirtz, C., Khan, U., De, S., ... & Coleman, J. N. (2011). Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced materials, 23(34), 3944-3948.
    [23] Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., ... & Zhang, H. (2011). Single‐layer semiconducting nanosheets: high‐yield preparation and device fabrication. Angewandte Chemie International Edition, 47(50), 11093-11097.
    [24] Svensson, C. H. R. I. S. T. E. R. (1974). The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 30(2), 458-461.
    [25] Zhang, S., Yan, Z., Li, Y., Chen, Z., & Zeng, H. (2015). Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions. Angewandte Chemie International Edition, 54(10), 3112-3115.
    [26] Ji, J., Song, X., Liu, J., Yan, Z., Huo, C., Zhang, S., ... & Zeng, H. (2016). Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature communications, 7(1), 13352.
    [27] Kaindl, R., Bayer, B. C., Resel, R., Müller, T., Skakalova, V., Habler, G., ... & Waldhauser, W. (2017). Growth, structure and stability of sputter-deposited MoS2 thin films. Beilstein journal of nanotechnology, 8(1), 1115-1126.
    [28] Orofeo, C. M., Suzuki, S., Sekine, Y., & Hibino, H. (2014). Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Applied Physics Letters, 105(8).
    [29] Yu, H., Liao, M., Zhao, W., Liu, G., Zhou, X. J., Wei, Z., ... & Zhang, G. (2017). Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS nano, 11(12), 12001-12007.
    [30] Moura, C. C., Tare, R. S., Oreffo, R. O., & Mahajan, S. (2016). Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface, 13(118), 20160182.
    [31] Van Petegem, S., Brandstetter, S., Maass, R., Hodge, A. M., El-Dasher, B. S., Biener, J., ... & Van Swygenhoven, H. (2009). On the microstructure of nanoporous gold: an X-ray diffraction study. Nano letters, 9(3), 1158-1163.
    [32] Kim, H. G., & Lee, H. B. R. (2017). Atomic layer deposition on 2D materials. Chemistry of Materials, 29(9), 3809-3826.

    下載圖示 校內:立即公開
    校外:2025-07-17公開
    QR CODE