| 研究生: |
張哲瑋 Chang, Che-Wei |
|---|---|
| 論文名稱: |
探討果蠅神經膠細胞發育與功能的研究方法 Methods of studying Drosophila glia development and function |
| 指導教授: |
劉雅心
Liu, Ya-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 眼盤 、神經膠細胞 、血腦屏障缺失 、行為測試 |
| 外文關鍵詞: | eye disc, glia cells, blood-brain barrier, behavior test |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經系統主要由兩大類群的細胞所組成,分別是神經細胞及膠細胞。過去對於神經系統的研究主要著重在探討神經細胞上。近期有相當多研究顯示,膠細胞的存在對於神經系統功能的運作與神經細胞是同等重要的,因此我的論文分為兩個部分來探討果蠅神經膠細胞的發育與功能。ㄧ是探討果蠅幼蟲時期眼盤中周邊神經包裹膠細胞的移動,另一個則是探討血腦屏障缺失對神經系統功能的影響,兩個部分都各自利用了不同的研究方法。前者,透過分子克隆的方式尋找能標示周邊神經包裹膠細胞的標記基因Ntan-1的增強子,使未來能以活組織培養及螢光攝影 (ex vivo culture and live imaging)的方式,觀察發育過程中膠細胞與感光神經元的交互作用。後者,以Moody-Gal4在發育中的神經周圍下部膠細胞內降低Rho1基因表現量的方式來破壞血腦屏障的完整性。我以螢光染劑注射測試證實神經周圍下部膠細胞發育過程中受損的確使血腦屏障功能缺失。接著透過攀爬實驗測試和嗅覺記憶實驗分別測試血腦屏障功能缺失果蠅的運動能力以及氣味記憶,發現血腦屏障缺失會影響果蠅神經系統的功能。
Nervous system is made of two major cell types, neuron and glia. In the past, studies on the nervous system mainly focused on the discussion of neuron. Recently, more studies have shown that the presence of glial cells is as important as neurons for the function of the nervous system. My thesis is divided into two parts to study the development and function of Drosophila glial cells. One is to explore the movement of glial cells in the Drosophila larval eye disc, and the other is to explore the effect of defective blood-brain barrier (BBB) on the function of the nervous system. Both parts use different research methods. The 1st part of my thesis, to label wrapping glia in the larval eye disc, I dissected genomic regions of the wrapping glia marker gene Ntan-1 to identify its enhancer elements. It will facilitate the future study of using ex vivo culture and live imaging to examining the interaction between glial cells and photoreceptor neurons in the larval eye disc. The 2nd part of my thesis, to study the effect of defective BBB on the nervous system, I used moody-Gal4 to knockdown the expression of Rho1 gene in the developing subperineurial glia for interrupting the formation of intact BBB. Fluorescent dye injection in flies of reduced Rho1 in subperineurial glia validated this experimental approach to disrupt BBB. Results of climbing test and olfactory memory test on flies with defective BBB showed that the impairment of BBB has an effect on the function of the Drosophila nervous system.
Abbott N. J., Patabendige A. A., Dolman D. E., Yusof S. R., Begley D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37, 13-25. (2010).
Bainton R. J., Tsai L. T., Schwabe T., DeSalvo M., Gaul U., Heberlein U. moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell 123, 145-156. (2005).
Barolo, S., Carver, L.A., Posakony, J.W. GFP and beta-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. BioTechniques 29(4): 726-732. (2000).
Berrak U., Kuchuan C., Hugo J.B. Drosophila tools and assays for the study of human diseases. Disease Models & Mechanisms. 9: 235-244 (2016).
Booth G.E, Kinrade E.F., Hidalgo A. Glia maintain follower neuron survival during Drosophila CNS development. Development 127:237-44. (2000).
Branson, K., Robie, A.A., Bender, J., Perona, P., Dickinson, M.H.. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6(6): 451-457. (2009).
Choi, K.W., Benzer, S.. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78(1): 125-136. (1994).
Feany, M. and Bender, W.. A Drosophila Model of Parkinson's disease. Nature 404,394 -398. (2000).
Freeman M.R., Doherty J.. Glial cell biology in Drosophila and vertebrates. Trends Neurosci 29:82-90 (2006).
Freeman, M. R., Delrow, J., Kim, J., Johnson, E., & Doe, C. Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron, 38(4), 567–580. (2003).
Freeman, M. R.. Drosophila central nervous system glia. Cold Spring Harbor Perspectives in Biology, 7(11). (2015).
Gerber B, Hendel T. Outcome expectations drive learned behaviour in larval Drosophila. Proc R Soc B 273: 2965-2968. (2006).
Hardie RC, Raghu P. Visual transduction in Drosophila. Nature.;413:186–193. (2001).
Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci. 4:266-275. (2003).
Ho, T.Y., Wu, W.H., Hung, S.J., Liu, T., Lee, Y.M., Liu, Y.H. Expressional Profiling of Carpet Glia in the Developing Drosophila Eye Reveals Its Molecular Signature of Morphology Regulators. Front. Neurosci. 13: 244. (2019).
Honjo K, Furukubo-T.K. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 29: 852–862. (2009).
Ilya V., Karl G. J.. Electroretinograms in Drosophila: A Robust and Genetically Accessible Electrophysiological System for the Undergraduate Laboratory, Journal of Undergraduate Neuroscience Education, v.11, 2012, p. A149-A157. (2012).
Inagaki H. K., Kamikouchi A. and Ito K. Protocol for quantifying sound-sensing ability of Drosophila melanogaster. Nat. Protoc. 5, 26-30. (2010).
Ito, K., Urban, J., & Technau, G. M. Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux's Archives of Developmental Biology, 204(5), 284-307. (1995).
Jessen K. R., Mirsky R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682. (2005).
Kanai, M., Kim, M. ‐J., Akiyama, T., Takemura, M., Wharton, K., O'connor, M. B., & Nakato, H. Regulation of neuroblast proliferation by surface glia in the Drosophila larval brain. Scientific Reports, 8(1), 3730. (2018).
Keene A.C, Waddell S. Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci. 8:341-354. (2007).
Klämbt, C., & Goodman, C. S. The diversity and pattern of glia during axon pathway formation in the Drosophila embryo. Glia, 4(2), 205-213. (1991).
Kremer, M. C., Jung, C., Batelli, S., Rubin, G. M., & Gaul, U. The glia of the adult Drosophila nervous system. Glia, 65(4), 606–638. (2017).
Limmer, S., Weiler, A., Volkenhoff, A., Babatz, F., & KläMbt, C. The Drosophila blood‐brain barrier: Development and function of a glial endothelium. Frontiers in Neuroscience, 8, 365. (2014).
Simons, M, Nave, K-A. Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8:a020479. (2015).
Sonnenfeld M .J., Jacobs J.R.. Mesectodermal cell fate analysis in Drosophila midline mutants. Mechanisms of development, 46, 3-13 (1994).
Ma, Z., Stork, T., Bergles, D. E., & Freeman, M. R. Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature, 539(7629), 428–432. (2016).
McGuire S. E., Deshazer M. and Davis R. L. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog. Neurobiol. 76, 328-347. (2005).
Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron. 20:445-468 (1998).
Obermeier B., Daneman R., Ransohoff R. M.. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19, 1584-1596. (2013).
Omoto, J. J., Yogi, P., & Hartenstein, V. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors. Developmental Biology, 404(2), 2–20. (2015).
Pereanu, W., Shy, D., & Hartenstein, V. Morphogenesis and proliferation of the larval brain glia in Drosophila. Developmental Biology, 283(1), 191-203. (2005).
Pereanu, W., Spindler, S., Cruz, L., & Hartenstein, V. Tracheal development in the Drosophila brain is constrained by glial cells. Developmental Biology, 302(1), 169–180. (2007).
Pinsonneault R.L., Mayer N., Mayer F., Tegegn N., Bainton R.J. Novel models for studying the blood-brain and blood-eye barriers in Drosophila. Methods Mol Biol. ;686:357–369. (2011).
Samantha J. H. and Roland J. B.. Barrier mechanisms in the Drosophila blood-brain barrier. Neurosci.; 8: 414. (2014).
Selcho M, Pauls D, Han KA, Stocker RF, Thum AS. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS ONE 4: e5897. (2009).
Shao H., Chen S., Marian B.. Environment-Living Organism's Interactions from Physiology to Genomics. Int J Genomics. (2015).
Silies, M., Yuva, Y., Engelen, D., Aho, A., Stork, T., & Klämbt, C. Glial cell migration in the eye disc. Journal of Neuroscience, 27(48), 13130-13139. (2007).
Simon J. C. and Dickinson M. H. A new chamber for studying the behavior of Drosophila. PLoS ONE 5, e8793. (2010).
Stark WS, Wasserman GS. Transient and receptor potentials in the electroretinogram of Drosophila. Vision Res. ;12:1771-1775. (1972).
Stork, T., Sheehan, A., Tasdemir‐Yilmaz, O. E., & Freeman, M. R. Neuron‐Glia Interactions through the heartless FGF receptor signaling pathway mediate morphogenesis of drosophila astrocytes. Neuron, 83(2), 388–403 (2014).
Stork T., Engelen D., Krudewig A., SiliesM ., Bainton R.J., Klämbt C. Organization and function of the blood-brain barrier in Drosophila J. Neurosci., 28, pp. 587-59 (2008)
Taryn B. and Armin B.. What are Neurodegenerative Diseases and How Do They Affect the Brain. Young Minds; 6. (2018).
Torres-Oliva M, Schneider J, Wiegleb G, Kaufholz F, Posnien N.. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity. PLoS Genetics. (2018).
Vadim Y. A.. Protein translocation in photoreceptor light adaptation: a common theme in vertebrate and invertebrate vision Sci. STKE. (2003).
Venken, K. J. T., Simpson, J. H. and Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202-230. (2011).
Xiong, W.C. & Montell, C. Defective glia induce neuronal apoptosis in the Repo visual system of Drosophila. Neuron, 14, pp. 581–590 (1995).
Yeh, P.A., Liu, Y.H., Chu, W.C., Liu, J.Y., Sun, Y.H. Glial expression of disease-associated poly-glutamine proteins impairs the blood-brain barrier in Drosophila. Hum. Mol. Genet. 27(14): 2546-2562. (2018).
校內:2025-08-18公開