| 研究生: |
陳昭宏 Chen, Chao-Hong |
|---|---|
| 論文名稱: |
在摻雜鋁之氧化鋅奈米柱陣列透明導電薄膜表面沉積金屬硫化物奈米粒子作為光電化學電池之光電極 Deposition of Metal Sulfide Nanoparticles on Al-doped ZnO Nanorod Arrays Thin Film as a Photoelectrode for Photoelectrochemical Cell |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 摻雜鋁氧化鋅 、氧化鋅 、金屬硫化物 、透明導電膜 、光電化學 |
| 外文關鍵詞: | AZO, ZnO, metal sulfide, transparent conducting oxide, photoelectrochemistry |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在氧化鋅摻雜鋁(AZO)奈米柱陣列透明導電薄膜分別沉積硫化銀及硫化鉛奈米粒子,並探討其光電化學性質。
首先在玻璃基板上旋轉塗佈由溶膠凝膠法製得之氧化鋅晶種層,然後以化學浴沉積法成長AZO奈米柱陣列薄膜,接著氫氣處理,最後以連續式離子層吸附反應(SILAR)法在表面沉積硫化銀和硫化鉛奈米粒子,探討不同沉積次數對光電化學性質的影響。經由掃描式電子顯微鏡、高解析穿透式電子顯微鏡、X射線繞射儀、及紫外線/可見光光譜儀的分析,證實AZO奈米柱陣列表面分別成功沉積了硫化銀及硫化鉛奈米粒子,其結構分別為單斜及立方最密堆積。而且,隨著金屬硫化物沉積量的增加,可見光至近紅外光區域的吸收也隨之增加。
進一步在三極式電化學系統中探討其光電化學性質,結果顯示,硫化銀及硫化鉛系統分別在SILAR循環15次及20次時可以得到最佳的光電流密度,且硫化鉛系統之光電流密度較硫化銀系統明顯為高。又硫化銀及硫化鉛系統之最大產氫效率值分別為0.34 %和0.91 %,且當波長420 nm、偏壓- 0.2 V 時的外部量子效率分別為0.79 %和5.46 %。
In this thesis, Ag2S and PbS nanoparticles were deposited separately on Al-doped ZnO (AZO) nanorod array transparent conductive thin films and their photoelectrochemical properties were investigated.
Firstly, sol-gel derived ZnO seed layer was coated on the glass substrate by spin-coating. Secondly, AZO nanorod array thin film was grown on the seed layer by chemical bath deposition and then treated in a hydrogen atmosphere. Finally, Ag2S and PbS nanoparticles were deposited separately on the surface of thin film by successive ion layer absorption and reaction (SILAR) method. The effect of SILAR cycle number on the photoelectro- chemical property was investigated. From the analyses of SEM, HRTEM, XRD and UV-Vis spectra, it was recognized that Ag2S and PbS nanoparticles have been successfully deposited on the surface of AZO nanorod array thin film separately and they had the monoclinic and cubic structures, respectively. Also, the absorption in the region of visible to near IR increased with the increase in the deposition amount of metal sulfide.
Further photoelectrochemical investigation in a three-electrode system revealed that the highest photocurrent densities were obtained at 15 and 20 SILAR cycles for Ag2S and PbS systems, respectively. Also, the highest photocurrent density of PbS system was significantly higher that that of Ag2S system. Furthermore, for Ag2S and PbS systems, the maximum hydrogen generation efficiencies were 0.34 % and 0.91 %,respectively, and the external quantum efficiencies at 420 nm and a bias of - 0.2 V were 0.79 % and 5.46 %, respectively.
1.K.L. Chopra, S. Magor, and D.K. Pandya, Thin Solid Films, 102, 1 (1983)
2.曲喜新、楊邦朝、姜節儉、張懷武,“電子薄膜材料”,北京科學出版社 (1996)
3.吳坤陽,“溶凝膠法製備含銀之AZO透明導電膜的研究”,國立成功大學化學工程所碩士論文 (2005)
4.A.J. Freeman, K.R. Poeppelmeier, and T.O. Mason, R.P.H. Chang, and T. J. arks, MRS Bull., Aug., 45 (2000)
5.楊明輝,”工業材料”,179,134 (1999)
6.R. Wang, A. Sleight, and R. Gardner, J. Mater. Res., 11, 1659 (1996)
7.T.Minami, T. Takumu, and S. Takata, J. Vac. Sci. Technol. A, 14, 1704 (1996)
8.Z.Q. Xu, H. Deng, Y Li, Q.H. Guo, and Y.R. Li, Mater. Res. Bull., 41, 354 (2006)
9.T.O. Mason, R.P.H. Chang, T.J. Mark, and K.R. Poeppelmeier, “Improved Transparent Conducting Oxides for Photovoltaics”, Final Research Report, NorthwesternUniversity, Evanston, Illinois, (1may 1999-31Dec. 2002)
10.M.M. Bagheri-Mohagheghi and M. Shokooh-Saremi, Semicond. Sci. Technol., l8, 97 (2003)
11.D. Song, J. Xia, E.C. Cho, and A.G. Aberie, Photovoltaics Special Research Centre, University of New South Wales, UNSW Sydney NSW2052,Australia
12.G.B. Palmer, K.R. Poeppelmeier, and T.O. Mason, Chem. Mater., 9, 3121 (1997)
13.Z.Q. Xu, H. Deng, Y. Li, Q.H. Guo, and Y.R. Li, Mater. Res. Bull., 41 354 (2006)
14.W. Tang and D.C Cameron, Thin Solid Films, 238, 83 (1994)
15.O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda ,and A.K. Pradhan, Appl. Phys. Lett., 90, 252108 (2007)
16.P. Kadam, C. Agashe ,and S.J. Mahamuni, J. Appl. Phys., 104, 103501 (2008)
17.K.Y. Wu, C.C. Wang ,and D.H. Chen, Nanotechnology, 18, 305604 (2007)
18.M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nature Mater., 4, 455 (2005)
19.L.E. Greene, M. Law, J.H. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R. Saykally ,and P.D. Yang, Angew. Chem. Int.Ed., 42, 3031 (2003)
20.L. Vayssieres, Adv. Mater., 15, 464 (2003)
21.R. Deng, Y. Zou, Z. Chen, G. Jiang ,and H. Tang, Mater. Lett., 61, 3582 (2007)
22.S. Cho, S.H. Jung, J.W. Jang, E. Oh ,and K.H. Lee, Cryst. Growth Des., 8, 4553 (2008)
23.C.H. Hsu and D.H. Chen, Nanotechnology, 21, 285603 (2010)
24.S.H. Lee, T.S. Lee, K.S. Lee, B. Cheong, Y.D. Kim ,and W.M. Kim, J. Phys. D: Appl. Phys., 41, 095303 (2008)
25.P. Rahlfs, Z. Phys. Chem. B, 31, 157 (1935)
26.R.J. Cava, F. Reidinger,and B.J. Wuensh, J. Solid State Chem., 31, 69 (1980)
27.S. Kashida, N. Watanabe, T. Hasegawa, H. Iida,and M. Mori,and S. Savrasov, Solid State Ionics, 158, 167 (2003)
28.D.J. Vaughan and J.R Craig,”Mineral Chemistry of Metal Sulfides”, Cambridge University Press (1978)
29.S. Miyatani, J. Phys. Soc. Jpn., 10, 786 (1955)
30.P. Junod, H. Hediger, B. Kilchor, and J. Wullschleger, Philos. Mag., 36, 941 (1977)
31.H. Dlala, M. Almuok, S. Belgacem, P. Girard, and D. Barjon, Eur. Phys. J. A, 2, 13 (1998)
32.A.K. Abass, Solar Energy Mater, 17, 375 (1988)
33.K.D. Lae, and Y.H. Ill, Solid State Ionics, 81, 135 (1976)
34.J. Eneva. S. Krrova, A. Panov, and H. Haefke,“Gas Phase and Surface Chemistry in Electronic Materials Processing”, Pittsburg, 265 (1994)
35.X.S. Peng, G.W. Meng, J. Zhang, X.F. Wang, L.X. Zhao, Y.W. Wang,and L.D. Zhang, Mater. Res. Bull., 37 1369 (2002)
36.C.H. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology, 18, 485202 (2007)
37.Y. Ofir, B. Samanta, Q.J Xiao, B.J. Jordan, H. Xu, P. Arumugam, R. Arvizo, M.T. Tuominen, and V.M. Rotello, Adv. Mater., 20, 2628 (2008)
38.L. Dloczik and R. Koenenkamp, J. Solid State Eletrochem., 8, 142 (2004)
39.Z.B Zhuang, Q. Peng, X. Wang, and Y.D. Li, Angew. Chem. Int. Ed., 46, 8174 (2007)
40.K. Nagasuna, T. Akita, M. Fujishima, and Hi. Tada, Langmuir, 27, 7294 (2011)
41.A. Tubtimtae, K.L. Wu, H.Y. Tung, M.W. Lee, and G.J. Wang, Electrochem. Commun., 12, 1158 (2010)
42.Y. Xie, S.H. Heo, Y.N. Kim, S.H. Yoo, and S.O. Cho, Nanotechnology, 21, 015703 (2010)
43.F.C. Meldrum, J. Flath, and W. Knoll, Thin Solid Films, 348, 188 (1999)
44.T.S. Moss, Proc. IRE, 43, 1869 (1955)
45.R.A. Oronzo-Teraz, M. Sotelo-Lerma, R. Ramirez-Bon, M.A. Quevedo-Lopez, O. Mendoza-Gonzalez, O. Zelava-Angel, Thin Solid Films, 587, 343 (1999)
46.J.B Gao, J.M. Luther, O.E. Semonin, R.J. Ellingson, A.J. Nozik, and M.C. Beard, Nano Lett., 11, 1002 (2011)
47.S. Ruhle, A. Zaban, and M. Shalom, ChemPhysChem, 11, 2290 (2010)
48.H.J. Lee, P. Chen, S.J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin, P. Comte, S.M. Zakeeruddin, S.I. Seok, M. Gratzel, and M.K. Nazeeruddin, Langmuir, 25, 7602 (2009)
49.D.R. Baker and P.V. Kamat, J. Phys. Chem. C, 113, 17967 (2009)
50.D.R. Baker and P.V. Kamat, Adv. Funct. Mater., 19, 805 (2009)
51.S. Hotchandani and P.V. Kamat, Chem. Phys. Lett., 191, 320 (1992)
52.Y. Tak, S.J. Hong, J.S. Lee, and K. Yong, J. Mater. Chem., 19, 5945 (2009)
53.W. Lee, S.K. Min, V. Dhas, S.B. Ogale, and S.H. Han, Electrochem. Commun., 11, 103 (2009)
54.G.M. Wang, X.Y Yang, F. Qian, J.Z. Zhang, and Y.Li, Nano Lett., 10, 1088 (2010)
55.Y. Jin-nouchi, T. Hattori, Y. Sumida, M. Fujishima, and H. Tada, ChemPhysChem, 11, 3592 (2010)
56.B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962)
57.“sol-gel technologies and their products”, http://www.chemat.com/, CHEMAT Technology, Inc.
58.C. J. Brinker, and G. W. Scherer, “Sol-gel Science: the physics and chemistry of sol-gel processing”, Academic Press, Inc. (1990)
59.張湘瑜,”摻雜鎵之氧化鋅奈米柱薄膜的合成及特性研究”, 國立成功大學化學工程所碩士論文 (2009)
60.吳景輝,”含銀AZO透明導電膜及AZO@Au奈米粉體之研究”, 國立成功大學化學工程所碩士論文 (2007)
61.D.E. Bornside, C.W. Macosko, and L.E. Scriven, J. Imaging Tech., 13, 122 (1987)
62.L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, and P.D Yang, Inorg. Chem., 45, 7535 (2006)
63.Q.Li, V. Kumar, Y.Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Chem. Mater., 17, 1001 (2005)
64.L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 5, 1231 (2005)
65.K. Govender, D.S. Boyle, P.B. Kenway, and P.O’Brien, J. Mater. Chem., 14, 2575 (2004)
66.R.W. Nosker, P. Mark, and J.D. Levine, Surf. Sci., 19, 291 (1970)
67.K. Govender, D.S. Boyle, P.B. Kenway, and P.J. O’Brien, Mater. Chem, 14, 2575 (2004)
68.S. Yamabi and H. J. Imai, Mater. Chem., 12, 3773 (2002)
69.A. Chittofrati and E. Matijevic, Colloids Surf., 48, 65 (1990)
70.R.A. McBride, J.M. Kelly, and D.E. McCormack, J. Mater. Chem., 13, 1196 (2003)
71.R.B. Peterson, C.L. Fields, and B.A. Gregg, Langmuir, 20, 5114 (2004)
72.M.A. Verges, A. Mifsud, C.J. Serna, J. Chem. Soc., Faraday Trans., 86, 959 (1990)
73.K.S. Chou, W.H.Chen, C.S. Huang, J. Chin. Inst. Chem. Eng.,21, 327 (1990)
74.S. Music, S. Popovic, M. Maljkovic, E. Dragcevic, J. Alloys Compd., 347, 324 (2002)
75.P. Obrien, T. Saeed, J. Knowles, J. Mater. Chem., 6, 1135 (1996)
76.T. Trindade, J.D.P. Dejesus, P.J. Obrien, Mater. Chem., 4, 1611 (1994)
77.H. Zhang, D.R.Yang, X.Y. Ma, and D.L. Que, J. Phys. Chem. B, 109, 17055 (2005)
78.Y. Sakka, K. Halada, and E. Ozawa, Ceram. Trans., 1, 31 (1988)
79.M. Guo, P. Diao, and S.M. Cai, J. Solid State Chem., 178, 1864 (2005)
80.C.H. Hung, and W.T. Whang, Mater. Chem. Phys., 82, 705 (2003)
81.S. Ezhilvalavan and T.R.N. Kutty, Appl. Phys. Lett., 69, 3540 (1996)
82.L. Spanhel, and M.A. Anderson, J. Am. Chem. Soc., 113, 2826 (1991)
83.L. Vayssieres, K. Keis, S.E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B., 105, 3350 (2001)
84.L. Vayssieres, K. Keis, A. Hagfeldt, and S.E. Lindquist, Chem. Mater., 13, 4395 (2001)
85.C. Pacholski, A. Kornowski, and H. Weller, Angew. Chem. Int. Ed., 41, 1188 (2002)
86.B. Liu, and H.C. Zeng, Langmuir, 20, 4196 (2004)
87.Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott, J.Am. Chem. Soc., 124, 12954 (2002)
88.Y. Tak and K. Yong, J. Phys. Chem. B, 109, 19263 (2005)
89.K. Govender, D.S. Boyle, P.B. Kenway, and P. O'Brien, J. Mater. Chem., 14, 2575 (2004)
90.C.G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000)
91.P. Nunes, E. Fortunato, and R. Martins, Thin Solid Films, 383, 277 (2001)
92.P. Sagar, M. Kumar, and R.M. Mehra, Thin Solid Films, 489, 94 (2005)
93.R. Ghosh, G.K. Paul, and D. Basak, Mater. Res. Bull., 40, 1905 (2005)
94.M. Ohyama, H. Kozuka, and T. Yoko, Thin Solid Films, 306, 78 (1997)
95.H.M. Pathan and C.D. Lokhande, Bull. Mater. Sci., 27 85 (2004)
96.楊明輝,”透明導電膜”,藝軒圖書出版社 (2006)
97.J.R. Bellingham, W.A. Phillips, and C.J. Adkins, J. Mater. Sci. Lett., 11, 263 (1992)
98.I. Hamberg and C.G. Granqvist, J. Appl. Phys., 60, R123 (1986)
99.M.A. Archer, A.J. Nozik, “Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion”, Imperial College Press, March (2008)
100.H.O. Finkdea (ED.), “Semiconductor Electrodes”, P. 2, Elsevier Science 110 Publishing Co. Inc., New York (1998)
101.M. Gratzel, Nature, 414, 15 (2001)
102.T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrogen Energy, 27, 991 (2002)
103.J. Nowotny, C.C. Sorrell, T. Bak, and L.R. Sheppard, Sol. Energy, 78, 593 (2005)
104.S.N. Frank and A.J. Bard, J. Electrochem. Soc., 125, 246 (1978).
105.R.N. Noufi, R.N. Noufi, P.A. Kohl, S.N. Frank, and A.J. Bard, J. Electrochem. Soc., 125, 246 (1978).
106.M.A. Butler and D.S. Ginley, J. Mater. Sci., 15, 1 (1980)
107.A.J. Bard and M.S. Wrighton, J. Electrochem. Soc., 124, 1706 (1977)
108.B.R Hyun, Y.W. Zhong, A.C. Bartnik, L.F Sun, H.D. Abruna, F.W. Wise, J.D. Goodreau, J.R. Matthews,T.M. Leslie, and N.F. Borrelli, ACS nano, 2, 2206 (2008)
109.Q. Kang, S.H Liu, L.X Yang, Q.Y. Cai, and C.A. Grimes, Appl. mater. Interfaces, 3, 746 (2011)
110.S.M. Yang, Z.S. Wang, C.H. Huang, Synth. Met, 123, 267 (2001)
111.P. Hoyer and R. Konenkamp, Appl. Phys. Lett., 66, 349 (1995)
112.G..M. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, and Y. Li, Nano Lett, 10, 1088 (2010)
113.K. Ogisu, K. Takanabe, D. Lu, M. Saruyama, T. Ikeda, M. Kanehara, T. Teranishi, K. Domen, Bull. Chem. Soc. Jpn., 82, 528 (2009)