簡易檢索 / 詳目顯示

研究生: 何世弘
Ho, Shih-Hung
論文名稱: 起始化學氣相沉積法於微流體晶片製程之應用
Application of Initiated Chemical Vapor Deposition (iCVD) in Manufacturing Process of Microfluidic Chip
指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系碩士在職專班
Department of Aeronautics & Astronautics (on the job class)
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 63
中文關鍵詞: PDMS微流體晶片起始化學氣相沉積DCNA黏合技術
外文關鍵詞: PDMS Microfluidic chip, iCVD, DCNA, Bonding method
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前常用的 PDMS 微流體晶片黏合方式包含氧電漿氧化處理、電暈放電處
    理,但此種以電漿進行表面處理的方式,所形成的黏合強度有限,若能改善微
    流體晶片的黏合強度,將有利於提升微流體晶片的應用廣度。本研究將設計製
    作一起始化學氣相沉積(iCVD)設備,並用於 PDMS 微流體晶片之黏合製程。此
    設備可利用化學沉積方式進行表面改質,本研究將使用 iCVD 技術在 PDMS 微
    流體晶片表面形成一層 pGMA,再用 DCNA 技術完成微流體晶片的黏合。本
    研究將探討 iCVD 沉積過程中 GMA 流率及沉積時間等參數對沉積薄膜厚度的
    影響,並進一步探討薄膜厚度對黏合後的微流體晶片強度的影響,期望能找出
    最佳的製程參數,並有效提升微流體晶片的性能。
    研究結果顯示,使用此製程技術所製作之微流體晶片,與經氧電漿氧化處理的微
    流體晶片進行比較,不論是在黏合強度或是最高工作流率方面,都有更佳的表現,整
    體黏合強度可提升 50%,達到 105 psia 的壓力承受度,而流速最高可達 14 mL/min,
    約提升 80%,並有機會可使流道內部達到較複雜的流體流動型態(例如紊流)。本研究
    不僅成功製作出應用範圍廣泛的 iCVD 設備,並成功找出最佳之微流體晶片黏合製程
    參數,將可進一步提升 PDMS 微流體晶片的功能性與設計多樣性。

    In the field of microfluidics, oxygen plasma treatment and corona discharge
    treatment are commonly used for surface modification and bonding technologies,
    especially for the glass and PDMS based chips. However, the demand for bonding
    strength has gradually increased in recent years. Therefore, a new method is issued to bond PDMS microfluidic chips which is DCNA (Doubly Cross-linked Nano Adhesive). This is a method of depositing a layer of pGMA film on PDMS microfluidic wafers by iCVD firstly, and then using ethylenediamine to form NH2 bond on the chips surfaces to adhesive two part of microfluidic chip.
    In this study, we design and build an iCVD system, and use the presented system to
    deposit a layer of pGMA film on the PDMS microfluidic chips, and then bond the
    microfluidic chips with DCNA. We also measure the bonding strength of PDMS-based microfluidic chips under DCNA process and oxygen plasma treatment respectively. It can be found that the PDMS microfluidic chips bonded by this new technology has better performance in bonding strength up to 50% and increasing flow rate about 80% that can pass into the PDMS microfluidic chips. So it would be a new option for bonding PDMS microfluidic chips in the future.

    摘要 i Abstract iii 目錄 xiv 圖目錄 xvi 表目錄 xviii 第一章 前言 1 1-1研究背景與動機 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1常見微流體晶片黏合方式 5 2-1.1 氧電漿處理 5 2-1.2 電暈放電處理 7 2-1.3 其他黏合方式介紹 9 2-2 化學氣相沉積系統 10 2-2.1 化學氣相沉積原理 11 2-3 起始化學氣相沉積系統 12 2-3.1 系統組成 13 2-3.2 起始化學氣相沉積之原理 14 2-3.3 起始化學氣相沉積之應用 15 2-3.4 反應氣體 18 第三章 研究方法 21 3-1機台設計 22 3-1.1 真空測試 26 3-1.2 溫度測試及控制 27 3-1.3 流量測試及控制 30 3-2 流道製作 31 3-3 黏合(Bonding) 32 3-3.1 起始化學氣相沉積 33 3-3.2 DCNA黏合 34 3-4 晶片測試 36 3-4.1 薄膜表面測試 37 3-4.2 強度測試 39 第四章 實驗結果與討論 44 4-1 pGMA薄膜生成 44 4-1.1不同GMA流率下對薄膜生成之影響 44 4-1.2不同沉積時間下對薄膜生成之影響 49 4-2 強度壓力分析 51 4-3 黏合強度差異分析 55 4-4 流速分析 56 第五章 結論與未來展望 59 5-1 結論與貢獻 59 5-2 未來展望 60 參考文獻 62

    1. Center, M.I., Introduction to lab-on-a-chip 2020: review, history and future. 2020.
    2. Duffy, D.C., et al., Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry, 1998. 70(23): p. 4974-4984.
    3. Lin, M.-S.L.a.J.-D., 橢圓微型模穴之微液體填充研究. http://hdl.handle.net/11536/78517, 2005: p. 31.
    4. Bhattacharya, S., et al., Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems, 2005. 14(3): p. 590-597.
    5. Hu, C., et al., Electrochemical grafting of poly(glycidyl methacrylate) on a carbon-fibre surface. RSC Advances, 2020. 10(18): p. 10599-10605.
    6. You, J.B., et al., A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices. Lab on a Chip, 2013. 13(7): p. 1266-1272.
    7. Duffy, D.C., et al., Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow. Journal of Micromechanics and Microengineering, 1999. 9(3): p. 211-217.
    8. Yang, C., W. Wang, and Z. Li. Optimization of corona-triggered PDMS-PDMS bonding method. in 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2009.
    9. Haubert, K., T. Drier, and D. Beebe, PDMS Bonding by Means of a Portable, Low-cost Corona System. Lab on a chip, 2007. 6: p. 1548-9.
    10. 吳東權等, 微機電系統之技術現況與發展. 工業技術研究院機械工業研究所, 2005.
    11. Petrov, I., et al., Microstructural evolution during film growth. Journal of Vacuum Science & Technology A, 2003. 21(5): p. S117-S128.
    12. Xu, J., Amine functionalization by initiated chemical vapor deposition (iCVD) for interfacial adhesion and film cohesion. 2011. 129.
    13. Baxamusa, S.H., S.G. Im, and K.K. Gleason, Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates. Physical Chemistry Chemical Physics, 2009. 11(26): p. 5227-5240.
    14. Khlyustova, A., Y. Cheng, and R. Yang, Vapor-deposited functional polymer thin films in biological applications. Journal of Materials Chemistry B, 2020. 8(31): p. 6588-6609.
    15. Tenhaeff, W.E. and K.K. Gleason, Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Advanced Functional Materials, 2008. 18(7): p. 979-992.
    16. Kim, K., S. Park, and S. Yang, The optimization of PDMS-PMMA bonding process using silane primer. BioChip Journal, 2010. 4: p. 148-154.

    無法下載圖示 校內:2026-09-23公開
    校外:2026-09-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE