簡易檢索 / 詳目顯示

研究生: 洪裕賓
Hung, Yu-Bin
論文名稱: 馬達內藏式主軸動態負載識別之研究
Identification of dynamic load for a built-in motor spindle
指導教授: 王俊志
Wang, Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 動態負載動態製程監測非線性機電系統馬達內藏式主軸
外文關鍵詞: built-in motor spindle, dynamic load, nonlinear electron-machanical system, dynamic process motoring
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要目的是建立感應馬達內藏式主軸的機電系統解析模式,用以分析在銑削動態負載下之主軸轉速及電流響應。並試由主軸馬達之電壓、電流信號及轉速信號來估測主軸的銑削動態負載。文中首先結合感應馬達動態數學模式及銑削製程負載模式建立感應馬達內藏式主軸之切削系統模式,並於建立模式後進行系統參數識別實驗估測主軸馬達電氣參數、轉子結構機械參數及銑削力參數。然後利用上述之非線性切削系統模式及已辨識之系統參數以數值方式來預測模擬已知銑削條件下的主軸馬達電流、功率及轉速。且由量測主軸馬達之電壓、電流與轉速信號推估動態銑削負載。
    由於此機電系統為非線性模式在分析上較為複雜,為了更方便觀察此系統受輸入動態負載的系統特性,因此建立一忽略馬達電機參數的簡化模式來易於求得動態轉速與動態負載之關係,並用以量測動態轉速估測銑削動態負載。而電流與銑削負載關係則以頻譜捲積概念來解釋電流受銑削負載的變化情形。最後實驗證明來評估上述方法由馬達之電壓、電流信號及轉速信號推估銑削動態負載的可行性。

    The thesis built the dynamic electron-mechanical analytical model to analysis the speed and current response for a built-in motor spindle under the dynamic milling load. In addition, it is also applied to estimate the dynamic milling load with the voltage, current and spindle speed. The model integrated the induction motor dynamic subsystem model and milling load model. After building the system model, the motor’s electronics parameters, spindle inertial and cutting constant can be identified from the experiments. Then, the nonlinear system model is applied to predict the current, power and speed of the spindle motor with the numerical method. Besides, it is developed to estimate the milling dynamic load when the current, voltage, and speed are captured.
    Due to the difficulty of the complex nonlinear system to realized the system characteristics. The simple model is built to explain the relation between the input harmonic force and output harmonic speed. The relation between the current and milling load is also estimated by the spectrum convolution theorem. Finally, the feasibility of the theorem is verified by the milling experiments.

    總目錄 中文摘要…………………………………………………………………….Ⅰ 英文摘要………………………………………………………….…………Ⅱ 誌謝………………………………………………………….………………Ⅲ 總目錄………………………………….……………………………………Ⅳ 圖目錄……………………………………………………………...…...... VIII 表目錄…………………………………………………………………….XI 符號說明……………………………………….……………………XII 第一章 緒論……………………………………………………..…………...1 1.1研究動機與目的……………………………………………………...1 1.2文獻回顧…………………………………………………………...…2 1.2.1 動態銑削負載模式…………………………………………...2 1.2.2 感應電動機系統模式……….……………………………..…3 1.2.3 加工機系統監測……….……………………………………..4 1.3研究範疇及論文架構………………………………………………...5 第二章 主軸機電系統模式及銑削負載模式建立.……….…….…..6 2.1 前言…………………………………………………….……………6 2.2 感應馬達基本原理…………………………....…………………….6 2.2.1 感應馬達三相電壓方程式………………...…………………6 2.2.2 q-d軸參考座標軸轉換……………………………………...10 2.2.3 感應馬達q-d軸電壓方程式…………………...……………12 2.2.4 馬達轉矩方程式…………………………………………….15 2.2.5 馬達單相穩態等效電路…………………………………….15 2.3 變頻器基本工作原理………………………………………………16 2.4 銑削加工製程之解析模式……..……….………………...…….18 2.4.1 基本切削函數……………………………………….....19 2.4.2 屑寬密度函數………………………………………….....21 2.4.3 刀刃序列函數………………………………………….....22 2.4.4 切線方向總銑削力…………………………………......23 2.5 主軸機電系統方塊圖 ……………………………………………...24 2.6 逆推預測主軸轉速及銑削負載模式………..………………….......25 2.7 機電系統線性化模式…………………………………..….…….....26 2.8 動態轉速推估動態負載簡化模式………………..……..……….....29 2.9 主軸機電系統功率分析模式……………………………….....30 2.9.1 平均電功率解析三相電流模式……………………………...30 2.9.2 動態電功率解析三相電流模式……………………………..32 2.10 實際量測三相電流識別動態負載遭遇問題說明……………33 第三章 主軸馬達電氣系統參數識別原理及實驗量測………….………..35 3.1前言…………………………………………..…………….………..35 3.2感應馬達電氣參數識別原理…………… …………………………35 3.2.1 直流測試求定子電阻原理介紹……….…………………......35 3.2.2 堵轉測試求轉子電阻及定轉子漏電感原理介紹…..…....….37 3.2.3 無載測試求互感及鐵心耗損原理介紹……………....…...…38 3.3 主軸轉動部機械參數識別原理…………………………………….40 3.5.1 轉動慣量(J)參數識別…………………………..………........40 3.5.2 最小平方法之系統識別…………………………..……….....41 3.5.3 黏滯係數(B)參數識別……………………………………….43 3.4 切削力常數kt、kr識別原理…………………………..…………... . .44 3.5 實驗結果…………………………………….……...…..……….....45 3.5.1 直流測試實驗結果………………………..……….............. . ..45 3.5.2 堵轉測試實驗結果………………………..……………….....45 3.5.3 無載測試實驗結果.……………………………….……….....46 3.5.4 轉子慣量及黏滯係數實驗結果………………..……….....48 3.5.5 黏滯係數實驗結果………………………....……….............50 3.5.6 切削力常數實驗結果……………………………..……….....50 第四章 主軸系統數值模擬與實驗驗證…………………………………...53 4.1 前言…………………………………………………………..…….53 4.2 主軸系統數值模擬探討………………………………………..….53 4.3 實驗設備、使用刀具及工件材料……………………….…………63 4.4 實驗規劃…...……………..………………………………...……...65 4.5 實驗驗證結果…...………..………………………………...……...66 第五章 結論與建議………………………………………………………...73 5.1 結論……………………………………………………….……….73 5.2 建議………………………………………………….………...…..74 附錄 參考文獻……………………………...……………………….…….………75 自述……………………………………………………...…….…….………77

    1. M. E. Martellotti, “An Analysis of the Milling Process,” Transaction of ASME, Vol. 63, pp.677-700, 1941.
    2. F. Koenigsberger, and A. J. P. Sabberwal, “An Investigation into the Cutting Force Pulsations during Milling Operations,” International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33, 1961.
    3. J. J. Wang, “Convolution Modelling of Milling Force System and its Application to Cutter Runout Identification,” PhD. Thesis, School of Mechanical Engineering, Georgia Institute of Technology, 1992.
    4. R. H. Park, “Two-Reaction Theory of Synchronous Machine-Generalized Method of Analysis,” AIEE Transactions, Vol. 48, pp. 716-727, 1929.
    5. P. C. Krause, and C.H. Thomas, “Simulation of Symmetrical Induction Machinery,” IEEE Transaction on Power Apparatus System, Vol. 84, pp.1038-1053, 1965.
    6. A. Muherjee, R. Karmakar, and A. K. Samantaray, “Modelling of Basic Induction Motor and Source Loading in Rotor–Motor System with Regenerative Force Field,” Simulation Practice and Theory, Vol. 7, pp. 563-576, 1999.
    7. B. Liang, B. S. Payne, A. D. Ball, and S. D. Iwncki, “Simulation and Fault Detection of Three–Phase Inductions,” Mathematics and Computers in Simulation, Vol. 61, pp. 1-15, 2002.
    8. M. C. Tsai, E. C. Tseng and M. Y. Cheng, “Design of a Torque Observer for Detecting Abnormal Load,” IFAC Control Engineering Practice, Vol.8, pp.259-269, 2000.
    9. Y. Altintas, “Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Measurements,” Transactions of ASME Engineering for Industry, Vol. 114, pp. 386-392, 1992.
    10. Y. H. Jeong, and D. W. Cho, “Estimating Cutting Force from Rotating and Stationary Feed Motor Currents on a Milling Machine,” International Journal of Machine Tools and Manufacture, Vol. 42, pp. 1559-1566, 2002.
    11. J. L. Stein and C. H. Wang, “Analysis of Power Monitoring on AC Induction Drive Systems,” ASME J. Dyn. Systems, Measurement Control, Vol. 112, 239-248, 1990.
    12. H. S. Liu, B. Y. Lee, and Y. S. Tarng, “Monitoring of Drill Fracture from the Current Measurement of a Three-Phase Induction Motor,” International Journal of Machine Tools and Manufacture, Vol. 36(6), pp. 729-738, 1996.
    13. B. Y. Lee, H. S. Liu, and Y. S. Tarng, “Monitoring of Tool Fracture in End Milling using Induction Motor Current,” Journal of Materials Processing Technology, Vol. 70, pp. 279-284, 1997.
    14. G. D. Kim and C. N. Chu, “In-process Tool Fracture Monitoring in Face Milling Using Spindle Motor Current and Tool Fracture Index,” International Journal of Manufacture Technology, Vol. 18, pp. 383-389, 2001.
    15. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, “Analysis of Electric Machinery and Drive systems,” Wiley-interscience, 2001.
    16. J. N. Juang, “Applied system identification,” Prentice Hall,1994.
    17. J. J. Cathey, R. K. Calvin, III, and A. K. Ayoub, “Transient Load Model of Induction Motor,” IEEE Transaction on Power Apparatus and Systems, Vol. 92, pp. 1399-1406, 1973.

    下載圖示 校內:立即公開
    校外:2005-07-29公開
    QR CODE