| 研究生: |
洪裕賓 Hung, Yu-Bin |
|---|---|
| 論文名稱: |
馬達內藏式主軸動態負載識別之研究 Identification of dynamic load for a built-in motor spindle |
| 指導教授: |
王俊志
Wang, Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 動態負載 、動態製程監測 、非線性機電系統 、馬達內藏式主軸 |
| 外文關鍵詞: | built-in motor spindle, dynamic load, nonlinear electron-machanical system, dynamic process motoring |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要目的是建立感應馬達內藏式主軸的機電系統解析模式,用以分析在銑削動態負載下之主軸轉速及電流響應。並試由主軸馬達之電壓、電流信號及轉速信號來估測主軸的銑削動態負載。文中首先結合感應馬達動態數學模式及銑削製程負載模式建立感應馬達內藏式主軸之切削系統模式,並於建立模式後進行系統參數識別實驗估測主軸馬達電氣參數、轉子結構機械參數及銑削力參數。然後利用上述之非線性切削系統模式及已辨識之系統參數以數值方式來預測模擬已知銑削條件下的主軸馬達電流、功率及轉速。且由量測主軸馬達之電壓、電流與轉速信號推估動態銑削負載。
由於此機電系統為非線性模式在分析上較為複雜,為了更方便觀察此系統受輸入動態負載的系統特性,因此建立一忽略馬達電機參數的簡化模式來易於求得動態轉速與動態負載之關係,並用以量測動態轉速估測銑削動態負載。而電流與銑削負載關係則以頻譜捲積概念來解釋電流受銑削負載的變化情形。最後實驗證明來評估上述方法由馬達之電壓、電流信號及轉速信號推估銑削動態負載的可行性。
The thesis built the dynamic electron-mechanical analytical model to analysis the speed and current response for a built-in motor spindle under the dynamic milling load. In addition, it is also applied to estimate the dynamic milling load with the voltage, current and spindle speed. The model integrated the induction motor dynamic subsystem model and milling load model. After building the system model, the motor’s electronics parameters, spindle inertial and cutting constant can be identified from the experiments. Then, the nonlinear system model is applied to predict the current, power and speed of the spindle motor with the numerical method. Besides, it is developed to estimate the milling dynamic load when the current, voltage, and speed are captured.
Due to the difficulty of the complex nonlinear system to realized the system characteristics. The simple model is built to explain the relation between the input harmonic force and output harmonic speed. The relation between the current and milling load is also estimated by the spectrum convolution theorem. Finally, the feasibility of the theorem is verified by the milling experiments.
1. M. E. Martellotti, “An Analysis of the Milling Process,” Transaction of ASME, Vol. 63, pp.677-700, 1941.
2. F. Koenigsberger, and A. J. P. Sabberwal, “An Investigation into the Cutting Force Pulsations during Milling Operations,” International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33, 1961.
3. J. J. Wang, “Convolution Modelling of Milling Force System and its Application to Cutter Runout Identification,” PhD. Thesis, School of Mechanical Engineering, Georgia Institute of Technology, 1992.
4. R. H. Park, “Two-Reaction Theory of Synchronous Machine-Generalized Method of Analysis,” AIEE Transactions, Vol. 48, pp. 716-727, 1929.
5. P. C. Krause, and C.H. Thomas, “Simulation of Symmetrical Induction Machinery,” IEEE Transaction on Power Apparatus System, Vol. 84, pp.1038-1053, 1965.
6. A. Muherjee, R. Karmakar, and A. K. Samantaray, “Modelling of Basic Induction Motor and Source Loading in Rotor–Motor System with Regenerative Force Field,” Simulation Practice and Theory, Vol. 7, pp. 563-576, 1999.
7. B. Liang, B. S. Payne, A. D. Ball, and S. D. Iwncki, “Simulation and Fault Detection of Three–Phase Inductions,” Mathematics and Computers in Simulation, Vol. 61, pp. 1-15, 2002.
8. M. C. Tsai, E. C. Tseng and M. Y. Cheng, “Design of a Torque Observer for Detecting Abnormal Load,” IFAC Control Engineering Practice, Vol.8, pp.259-269, 2000.
9. Y. Altintas, “Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Measurements,” Transactions of ASME Engineering for Industry, Vol. 114, pp. 386-392, 1992.
10. Y. H. Jeong, and D. W. Cho, “Estimating Cutting Force from Rotating and Stationary Feed Motor Currents on a Milling Machine,” International Journal of Machine Tools and Manufacture, Vol. 42, pp. 1559-1566, 2002.
11. J. L. Stein and C. H. Wang, “Analysis of Power Monitoring on AC Induction Drive Systems,” ASME J. Dyn. Systems, Measurement Control, Vol. 112, 239-248, 1990.
12. H. S. Liu, B. Y. Lee, and Y. S. Tarng, “Monitoring of Drill Fracture from the Current Measurement of a Three-Phase Induction Motor,” International Journal of Machine Tools and Manufacture, Vol. 36(6), pp. 729-738, 1996.
13. B. Y. Lee, H. S. Liu, and Y. S. Tarng, “Monitoring of Tool Fracture in End Milling using Induction Motor Current,” Journal of Materials Processing Technology, Vol. 70, pp. 279-284, 1997.
14. G. D. Kim and C. N. Chu, “In-process Tool Fracture Monitoring in Face Milling Using Spindle Motor Current and Tool Fracture Index,” International Journal of Manufacture Technology, Vol. 18, pp. 383-389, 2001.
15. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, “Analysis of Electric Machinery and Drive systems,” Wiley-interscience, 2001.
16. J. N. Juang, “Applied system identification,” Prentice Hall,1994.
17. J. J. Cathey, R. K. Calvin, III, and A. K. Ayoub, “Transient Load Model of Induction Motor,” IEEE Transaction on Power Apparatus and Systems, Vol. 92, pp. 1399-1406, 1973.