| 研究生: |
賴宣宇 Lai, Hsuan-Yu |
|---|---|
| 論文名稱: |
優化SEPT9藥物篩選平台與探討SEPT9抑制劑之構效關係 Modification of SEPT9 Screening Platform and Structure-Activity Relationship Study on SEPT9 Inhibitors |
| 指導教授: |
洪欣儀
Hung, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 細胞骨架 、septin 、SEPT9 、氯砒脲 、蛋白純化 、構效關係 |
| 外文關鍵詞: | cytoskeleton, septin, SEPT9, forchlorfenuron, protein purification, structure-activity relationship |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Septin 9 (SEPT9)被視為第四種細胞骨架的GTP酶,廣泛存在於各種細胞及組織中。SEPT9與其他細胞骨架的功能部分相似,例如細胞形狀的維持、細胞移動、分裂及增生和囊泡運輸。此外,SEPT9也與其他細胞骨架相互作用,在肌動蛋白的動力學與微管調節中發揮作用。SEPT9與多種疾病相關,包含多種癌別、遺傳性神經肌肉萎縮與細菌感染,因此可成為潛在藥物靶點。目前唯一上市的septin抑制劑為氯砒脲 (forchlorfenuron, FCF),具有抑制癌細胞生長、增生、遷移、侵襲的功能,但可惜的是它需要在較高濃度下作用且具有脫靶效應。
目前而言,對於SEPT9抑制劑的研究有限且其作用機制尚不明確,因此在本研究中首重是探討SEPT9抑制劑。為了進行SEPT9抑制劑的研究,首先需要建立一個篩藥平台,但是根據文獻與本實驗室的先前研究,發現SEPT9 的N端延伸部位容易降解,蛋白純度問題有待解決。因此,本研究旨於提升SEPT9蛋白產率及純度以優化SEPT9抑制劑的篩選平台,接著利用此平台篩選氯砒脲衍生物,篩藥結果將以局域表面電漿共振法進行驗證,最終探討藥物構效關係。
研究結果顯示,透過克隆及轉殖新序列,純化出三個不同的SEPT9蛋白: SEPT9G序列1、序列4及序列6,使得SEPT9蛋白純度成功提升。蛋白純化方法經過一步步優化後,蛋白產率最終提高了至少兩倍,提供了更有效率的SEPT9抑制劑篩選平台。篩藥結果顯示在26個氯砒脲衍生物中,有12個化合物具有抑制趨勢,其中3a、5c及5d這三個化合物為具有潛力的候選藥物,其半抑制濃度分別為90.97、99.39及94.83微莫耳濃度。透過局域表面電漿共振法,得知其結合親和力分別為3.9、17.6及22.0微莫耳濃度。最終,藥物構效關係的研究結果顯示,在苯環的十一號和十三號位進行取代所產生的氫鍵作用力是重要的,苯環對位適合小分子取代,而鄰位則是較大的苯環衍生較為合適。
Septin 9 (SEPT9), a GTPase, known as the fourth cytoskeleton, widely expresses in various cells and tissues. The functions of SEPT9 are partly similar to other cytoskeletons, for instance, cell shape maintenance, cell motility plus proliferation, cytokinesis, and vesicle targeting. On the other hand, it also interacts with other cytoskeletons and plays roles in actin dynamics and microtubule regulation. SEPT9 is associated with numerous diseases, including various cancer types, hereditary neuralgic amyotrophy, and bacterial infection. Thus, it could be a potential drug target. In addition, the only commercial septin inhibitor, forchlorfenuron (FCF), has been reported to inhibit cancer cell growth, proliferation, migration, and invasion. Unfortunately, it possesses off-target effects and requires high concentration to work.
Currently, research on SEPT9 inhibitors is scarce and the effects of SEPT9 inhibitors are vague. Therefore, the study of SEPT9 inhibitors is of the greatest importance in this research. To identify SEPT9 inhibitors, firstly, a screening platform must be established. However, in the way of building up the platform, several research and previous experience in our lab reveal that the N-terminal extension of the SEPT9 protein easily degrades, and the protein purity issue needs to be solved. Thus, the SEPT9 screening platform was optimized by improving SEPT9 protein yields and enhancing protein purities. The modified screening platform was used to screen FCF derivatives and the screening results were subsequently validated by the localized surface plasmon resonance (LSPR). Finally, the structure-activity relationship (SAR) study was conducted.
As a result, the protein purity was enhanced by the successful construction and purification of three SEPT9 truncated forms, SEPT9G residue 1, residue 4, and residue 6. The protein production method was optimized step by step and the protein yield was improved at least two times, which provided a more efficient platform to screen SEPT9 inhibitors. The screening results showed 12 out of 26 FCF analogs exhibited inhibitory effects. Among the 12 compounds, compounds 3a, 5c, and 5d are potential drug candidates with IC50 values of 90.97, 99.39, and 94.83 μM, respectively. Also, their binding affinities were 3.9, 17.6, and 22.0 μM, respectively, validated through LSPR. Eventually, the SAR can be concluded that hydrogen bond interaction is essential at both the 11- and 13-positions of the benzene. At the para site, there can be small substituents; at the ortho position, a bulky benzene ring substituent can be the best candidate.
1. Mostowy, S.; Cossart, P., Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol, 13, 183-94, 2012.
2. Pollard, T. D.; Goldman, R. D., Overview of the cytoskeleton from an evolutionary perspective. Cold Spring Harb Perspect Biol, 10, 1-7, 2018.
3. Ivanov, A. I.; Le, H. T.; Naydenov, N. G.; Rieder, F., Novel functions of the septin cytoskeleton: shaping up tissue inflammation and fibrosis. Am J Pathol, 191, 40-51, 2021.
4. Marquardt, J.; Chen, X.; Bi, E., Architecture, remodeling, and functions of the septin cytoskeleton. Cytoskeleton (Hoboken), 76, 7-14, 2019.
5. Benoit, B.; Baillet, A.; Pous, C., Cytoskeleton and associated proteins: pleiotropic jnk substrates and regulators. Int J Mol Sci, 22,8375-8399, 2021.
6. Hohmann, T.; Dehghani, F., The cytoskeleton-a complex interacting meshwork. Cells, 8, 362-416, 2019.
7. Zeng, Y.; Cao, Y.; Liu, L.; Zhao, J.; Zhang, T.; Xiao, L.; Jia, M.; Tian, Q.; Yu, H.; Chen, S.; Cai, Y., SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis, 10, 720-735, 2019.
8. Tang, D. D.; Gerlach, B. D., The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res, 18, 54-65, 2017.
9. Spiliotis, E. T.; Nakos, K., Cellular functions of actin- and microtubule-associated septins. Curr Biol, 31, 651-666, 2021.
10. Ong, M. S.; Deng, S.; Halim, C. E.; Cai, W.; Tan, T. Z.; Huang, R. Y.; Sethi, G.; Hooi, S. C.; Kumar, A. P.; Yap, C. T., Cytoskeletal proteins in cancer and intracellular stress: a therapeutic perspective. Cancers (Basel), 12, 238-261, 2020.
11. Hartwell, L. H., Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res, 69, 265-276, 1971.
12. Martins, C. S.; Taveneau, C.; Castro-Linares, G.; Baibakov, M.; Buzhinsky, N.; Eroles, M.; Milanovic, V.; Omi, S.; Pedelacq, J. D.; Iv, F.; Bouillard, L.; Llewellyn, A.; Gomes, M.; Belhabib, M.; Kuzmic, M.; Verdier-Pinard, P.; Lee, S.; Badache, A.; Kumar, S.; Chandre, C.; Brasselet, S.; Rico, F.; Rossier, O.; Koenderink, G. H.; Wenger, J.; Cabantous, S.; Mavrakis, M., Human septins organize as octamer-based filaments and mediate actin-membrane anchoring in cells. J Cell Biol, 222, 16-51, 2023.
13. Kinoshita, M., Assembly of mammalian septins. J Biochem, 134, 491-496, 2003.
14. Zent, E.; Wittinghofer, A., Human septin isoforms and the GDP-GTP cycle. Biol Chem, 395, 169-180, 2014.
15. Grupp, B.; Gronemeyer, T., A biochemical view on the septins, a less known component of the cytoskeleton. Biol Chem, 404, 1-13, 2023.
16. Castro, D.; da Silva, S. M. O.; Pereira, H. D.; Macedo, J. N. A.; Leonardo, D. A.; Valadares, N. F.; Kumagai, P. S.; Brandao-Neto, J.; Araujo, A. P. U.; Garratt, R. C., A complete compendium of crystal structures for the human SEPT3 subgroup reveals functional plasticity at a specific septin interface. IUCrJ, 7, 462-479, 2020.
17. Cavini, I. A.; Leonardo, D. A.; Rosa, H. V. D.; Castro, D.; D'Muniz Pereira, H.; Valadares, N. F.; Araujo, A. P. U.; Garratt, R. C., The structural biology of septins and their filaments: an update. Front Cell Dev Biol, 9, 1-24, 2021.
18. Shuman, B.; Momany, M., Septins from protists to people. Front Cell Dev Biol, 9, 1-6, 2021.
19. Marquardt, J.; Chen, X.; Bi, E., Septin assembly and remodeling at the cell division site during the cell cycle. Front Cell Dev Biol, 9, 1-9, 2021.
20. Spiliotis, E. T., Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases. J Cell Sci, 131, 1-22, 2018.
21. Boddy, K. C.; Gao, A. D.; Truong, D.; Kim, M. S.; Froese, C. D.; Trimble, W. S.; Brumell, J. H., Septin-regulated actin dynamics promote Salmonella invasion of host cells. Cell Microbiol, 20, 1-9, 2018.
22. Nakos, K.; Rosenberg, M.; Spiliotis, E. T., Regulation of microtubule plus end dynamics by septin 9. Cytoskeleton (Hoboken), 76, 83-91, 2019.
23. Nakos, K.; Radler, M. R.; Spiliotis, E. T., Septin 2/6/7 complexes tune microtubule plus-end growth and EB1 binding in a concentration- and filament-dependent manner. Mol Biol Cell, 30, 2913-2928, 2019.
24. Nakos, K.; Alam, M. N. A.; Radler, M. R.; Kesisova, I. A.; Yang, C.; Okletey, J.; Tomasso, M. R.; Padrick, S. B.; Svitkina, T. M.; Spiliotis, E. T., Septins mediate a microtubule-actin crosstalk that enables actin growth on microtubules. Proc Natl Acad Sci U S A, 119, 1-6, 2022.
25. Iv, F.; Martins, C. S.; Castro-Linares, G.; Taveneau, C.; Barbier, P.; Verdier-Pinard, P.; Camoin, L.; Audebert, S.; Tsai, F. C.; Ramond, L.; Llewellyn, A.; Belhabib, M.; Nakazawa, K.; Di Cicco, A.; Vincentelli, R.; Wenger, J.; Cabantous, S.; Koenderink, G. H.; Bertin, A.; Mavrakis, M., Insights into animal septins using recombinant human septin octamers with distinct SEPT9 isoforms. J Cell Sci, 134, 1-28, 2021.
26. Kuzmic, M.; Castro Linares, G.; Leischner Fialova, J.; Iv, F.; Salaun, D.; Llewellyn, A.; Gomes, M.; Belhabib, M.; Liu, Y.; Asano, K.; Rodrigues, M.; Isnardon, D.; Tachibana, T.; Koenderink, G. H.; Badache, A.; Mavrakis, M.; Verdier-Pinard, P., Septin-microtubule association via a motif unique to isoform 1 of septin 9 tunes stress fibers. J Cell Sci, 135, 1-18, 2022.
27. Fischer, M.; Frank, D.; Rosler, R.; Johnsson, N.; Gronemeyer, T., Biochemical characterization of a human septin octamer. Front Cell Dev Biol, 10, 1-10, 2022.
28. Omrane, M.; Camara, A. S.; Taveneau, C.; Benzoubir, N.; Tubiana, T.; Yu, J.; Guerois, R.; Samuel, D.; Goud, B.; Pous, C.; Bressanelli, S.; Garratt, R. C.; Thiam, A. R.; Gassama-Diagne, A., Septin 9 has two polybasic domains critical to septin filament assembly and golgi integrity. iScience, 13, 138-153, 2019.
29. Fuchtbauer, A.; Lassen, L. B.; Jensen, A. B.; Howard, J.; Quiroga Ade, S.; Warming, S.; Sorensen, A. B.; Pedersen, F. S.; Fuchtbauer, E. M., Septin9 is involved in septin filament formation and cellular stability. Biol Chem, 392, 769-777, 2011.
30. Verdier-Pinard, P.; Salaun, D.; Bouguenina, H.; Shimada, S.; Pophillat, M.; Audebert, S.; Agavnian, E.; Coslet, S.; Charafe-Jauffret, E.; Tachibana, T.; Badache, A., Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments. Sci Rep, 7, 1-18, 2017.
31. Gonzalez, M. E.; Makarova, O.; Peterson, E. A.; Privette, L. M.; Petty, E. M., Up-regulation of SEPT9_v1 stabilizes c-Jun-N-terminal kinase and contributes to its pro-proliferative activity in mammary epithelial cells. Cell Signal, 21, 477-487, 2009.
32. Toth, K.; Galamb, O.; Spisak, S.; Wichmann, B.; Sipos, F.; Valcz, G.; Leiszter, K.; Molnar, B.; Tulassay, Z., The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer. Pathol Oncol Res, 17, 503-509, 2011.
33. Sun, J.; Zheng, M. Y.; Li, Y. W.; Zhang, S. W., Structure and function of Septin 9 and its role in human malignant tumors. World J Gastrointest Oncol, 12, 619-631, 2020.
34. Stanbery, L.; D'Silva, N. J.; Lee, J. S.; Bradford, C. R.; Carey, T. E.; Prince, M. E.; Wolf, G. T.; Worden, F. P.; Cordell, K. G.; Petty, E. M., High SEPT9_v1 expression is associated with poor clinical outcomes in head and neck squamous cell carcinoma. Transl Oncol, 3, 239-245, 2010.
35. Jiang, Y.; Liu, L.; Xiang, Q.; He, X.; Wang, Y.; Zhou, D.; Zou, C.; Chen, Q.; Peng, M.; He, J.; Jiang, X.; Xiang, T.; Yang, Y., SEPT9_v2, frequently silenced by promoter hypermethylation, exerts anti-tumor functions through inactivation of Wnt/beta-catenin signaling pathway via miR92b-3p/FZD10 in nasopharyngeal carcinoma cells. Clin Epigenetics, 12, 41-55, 2020.
36. Xu, D.; Liu, A.; Wang, X.; Chen, Y.; Shen, Y.; Tan, Z.; Qiu, M., Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis, 9, 514-526, 2018.
37. Gilad, R.; Meir, K.; Stein, I.; German, L.; Pikarsky, E.; Mabjeesh, N. J., High SEPT9_i1 protein expression is associated with high-grade prostate cancers. PLoS One, 10, 1-9, 2015.
38. Amir, S.; Golan, M.; Mabjeesh, N. J., Targeted knockdown of SEPT9_v1 inhibits tumor growth and angiogenesis of human prostate cancer cells concomitant with disruption of hypoxia-inducible factor-1 pathway. Mol Cancer Res, 8, 643-652, 2010.
39. Gonzalez, M. E.; Peterson, E. A.; Privette, L. M.; Loffreda-Wren, J. L.; Kalikin, L. M.; Petty, E. M., High SEPT9_v1 expression in human breast cancer cells is associated with oncogenic phenotypes. Cancer Res, 67, 8554-8564, 2007.
40. Blum, W.; Henzi, T.; Pecze, L.; Diep, K. L.; Bochet, C. G.; Schwaller, B., The phytohormone forchlorfenuron decreases viability and proliferation of malignant mesothelioma cells in vitro and in vivo. Oncotarget, 10, 6944-6956, 2019.
41. Agency, U. S. E. P., Pesticides - fact sheet for forchlorfenuron. Office of Prevention, United States Environmental Protection Agency, 1-18, 2004.
42. Vardi-Oknin, D.; Golan, M.; Mabjeesh, N. J., Forchlorfenuron disrupts SEPT9_i1 filaments and inhibits HIF-1. PLoS One, 8, 1-11, 2013.
43. Kim, K. K.; Singh, R. K.; Khazan, N.; Kodza, A.; Singh, N. A.; Jones, A.; Sivagnanalingam, U.; Towner, M.; Itamochi, H.; Turner, R.; Moore, R. G., Development of potent forchlorfenuron analogs and their cytotoxic effect in cancer cell lines. Sci Rep, 10, 3241-3248, 2020.
44. Heasley, L. R.; Garcia, G., 3rd; McMurray, M. A., Off-target effects of the septin drug forchlorfenuron on nonplant eukaryotes. Eukaryot Cell, 13, 1411-1420, 2014.
45. Sun, L.; Cao, X.; Lechuga, S.; Feygin, A.; Naydenov, N. G.; Ivanov, A. I., A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits epithelial migration via septin-independent perturbation of cellular signaling. Cells, 9, 1-25, 2019.
46. Kim, O. V.; Litvinov, R. I.; Mordakhanova, E. R.; Bi, E.; Vagin, O.; Weisel, J. W., Contribution of septins to human platelet structure and function. iScience, 25, 1-27, 2022.
47. Hu, Q.; Nelson, W. J.; Spiliotis, E. T., Forchlorfenuron alters mammalian septin assembly, organization, and dynamics. J Biol Chem, 283, 29563-29571, 2008.
48. Henzi, T.; Diep, K. L.; Oberson, A.; Salicio, V.; Bochet, C. G.; Schwaller, B., Forchlorfenuron and novel analogs cause cytotoxic effects in untreated and cisplatin-resistant malignant mesothelioma-derived cells. Int J Mol Sci, 23, 3963-3978, 2022.
49. Ki, M. R.; Pack, S. P., Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol, 104, 2411-2425, 2020.
50. Zhang, Z. X.; Nong, F. T.; Wang, Y. Z.; Yan, C. X.; Gu, Y.; Song, P.; Sun, X. M., Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact, 21, 191-208, 2022.
51. Singh, A.; Upadhyay, V.; Upadhyay, A. K.; Singh, S. M.; Panda, A. K., Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact, 14, 1-10, 2015.
52. Sorensen, H. P.; Mortensen, K. K., Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact, 4, 1-8, 2005.
53. de Marco, A., Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc, 2, 2632-2639, 2007.
54. Jia, B.; Jeon, C. O., High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol, 6, 196-212, 2016.
55. Mital, S.; Christie, G.; Dikicioglu, D., Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact, 20, 208-217, 2021.
56. Sezonov, G.; Joseleau-Petit, D.; D'Ari, R., Escherichia coli physiology in Luria-Bertani broth. J Bacteriol, 189, 8746-8749, 2007.
57. Faust, G.; Stand, A.; Weuster-Botz, D., IPTG can replace lactose in auto-induction media to enhance protein expression in batch-cultured Escherichia coli. Eng Life Sci, 15, 824-829, 2015.
58. Blay, V.; Tolani, B.; Ho, S. P.; Arkin, M. R., High-throughput screening: today's biochemical and cell-based approaches. Drug Discov Today, 25, 1807-1821, 2020.
59. Degorce, F.; Card, A.; Soh, S.; Trinquet, E.; Knapik, G. P.; Xie, B., HTRF: a technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr Chem Genomics, 3, 22-32, 2009.
60. Boettcher, A.; Gradoux, N.; Lorthiois, E.; Brandl, T.; Orain, D.; Schiering, N.; Cumin, F.; Woelcke, J.; Hassiepen, U., Fluorescence lifetime-based competitive binding assays for measuring the binding potency of protease inhibitors in vitro. J Biomol Screen, 19, 870-877, 2014.
61. Murali, S.; Rustandi, R. R.; Zheng, X.; Payne, A.; Shang, L., Applications of surface plasmon resonance and biolayer interferometry for virus-ligand binding. Viruses, 14, 717-738, 2022.
62. Prudent, R.; Annis, D. A.; Dandliker, P. J.; Ortholand, J. Y.; Roche, D., Exploring new targets and chemical space with affinity selection-mass spectrometry. Nat Rev Chem, 5, 62-71, 2021.
63. Thabault, L.; Liberelle, M.; Frederick, R., Targeting protein self-association in drug design. Drug Discov Today, 26, 1148-1163, 2021.
64. Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E., Guidelines for cell viability assays. Food Frontiers, 1, 332-349, 2020.
65. Nierode, G.; Kwon, P. S.; Dordick, J. S.; Kwon, S. J., Cell-based assay design for high-content screening of drug candidates. J Microbiol Biotechnol, 26, 213-225, 2016.
66. Huiyan, Z.; Shupeng, Y.; Karl; Natalia, V. B.; Sergei, A. E.; Sarah; Suxia, Z.; Jianzhong, S.; Zhanhui, W., Fluorescence polarization assays for chemical contaminants in food and environmental analyses. TrAC Trends in Analytical Chemistry, 114, 293-313, 2019.
67. Du, Y., Fluorescence polarization assay to quantify protein-protein interactions in an HTS format. Methods Mol Biol, 1278, 529-544, 2015.
68. Cehelnik, E. D.; Mielenz, K. D.; Velapoldi, R. A., Polarization effects on fluorescence measurements. J Res Natl Bur Stand A Phys Chem, 79A, 1-15, 1975.
69. Hall, M. D.; Yasgar, A.; Peryea, T.; Braisted, J. C.; Jadhav, A.; Simeonov, A.; Coussens, N. P., Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc, 4, 1-41, 2016.
70. Hendrickson, O. D.; Taranova, N. A.; Zherdev, A. V.; Dzantiev, B. B.; Eremin, S. A., Fluorescence polarization-based bioassays: new horizons. Sensors (Basel), 20, 7132-7164, 2020.
71. Guo, T.; Dong, Y.; Chen, Y.; Liu, L.; Sun, H., Development and optimization of a cascade of screening assays for inhibitors of TRF2. Anal Biochem, 602, 1-11, 2020.
72. Zhu, M. R.; Du, D. H.; Hu, J. C.; Li, L. C.; Liu, J. Q.; Ding, H.; Kong, X. Q.; Jiang, H. L.; Chen, K. X.; Luo, C., Development of a high-throughput fluorescence polarization assay for the discovery of EZH2-EED interaction inhibitors. Acta Pharmacol Sin, 39, 302-310, 2018.
73. Lea, W. A.; Simeonov, A., Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov, 6, 17-32, 2011.
74. Masson, J. F., Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst, 145, 3776-3800, 2020.
75. Jacqueline, J.; André, D.; Andrea, C.; Wolfgang, F.; Ondrej, S., Propagating and localized surface plasmon resonance sensing — A critical comparison based on measurements and theory. Sensing and Bio-Sensing Research, 7, 62-70, 2016.
76. Unser, S.; Bruzas, I.; He, J.; Sagle, L., Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors (Basel), 15, 15684-15716, 2015.
77. Sachan, R.; Ramos, V.; Malasi, A.; Yadavali, S.; Bartley, B.; Garcia, H.; Duscher, G.; Kalyanaraman, R., Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv Mater, 25, 2045-2050, 2013.
78. Csaki, A.; Stranik, O.; Fritzsche, W., Localized surface plasmon resonance based biosensing. Expert Rev Mol Diagn, 18, 279-296, 2018.
79. Hanson, E. K.; Whelan, R. J., Application of the Nicoya OpenSPR to studies of biomolecular binding: a review of the literature from 2016 to 2022. Sensors (Basel), 23, 4831-4852, 2023.
80. Bakhtiar, R., Surface plasmon resonance spectroscopy: a versatile technique in a biochemist’s toolbox. Journal of Chemical Education, 90, 203-209, 2013.
81. Schasfoort, R. B. M., Introduction to surface plasmon resonance. in handbook of surface plasmon resonance, The Royal Society of Chemistry, UK, 1-26, 2017.
82. Svirelis, J.; Andersson, J.; Stradner, A.; Dahlin, A., Accurate correction of the “bulk response” in surface plasmon resonance sensing provides new insights on interactions involving lysozyme and poly(ethylene glycol). ACS Sensors, 7, 1175-1182, 2022.
83. Berg, A.; Graber, M.; Schmutzler, S.; Hoffmann, R.; Berg, T., A high-throughput fluorescence polarization-based assay for the SH2 domain of STAT4. Methods Protoc, 5, 93-102, 2022.
84. Marlowe, T.; Alvarado, C.; Rivera, A.; Lenzo, F.; Nott, R.; Bondugji, D.; Montoya, J.; Hurley, A.; Kaplan, M.; Capaldi, A.; Cance, W., Development of a high-throughput fluorescence polarization assay to detect inhibitors of the FAK-Paxillin interaction. SLAS Discov, 25, 21-32, 2020.
85. Chen, Y.; Fu, Z.; Li, D.; Yue, Y.; Liu, X., Optimizations of a novel fluorescence polarization-based high-throughput screening assay for beta-catenin/LEF1 interaction inhibitors. Anal Biochem, 612, 1-10, 2021.
86. Kim, J.; Felts, S.; Llauger, L.; He, H.; Huezo, H.; Rosen, N.; Chiosis, G., Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J Biomol Screen, 9, 375-381, 2004.
87. Rosa, H. V. D.; Leonardo, D. A.; Brognara, G.; Brandao-Neto, J.; D'Muniz Pereira, H.; Araujo, A. P. U.; Garratt, R. C., Molecular recognition at septin interfaces: the switches hold the key. J Mol Biol, 432, 5784-5801, 2020.
88. Kesisova, I. A.; Robinson, B. P.; Spiliotis, E. T., A septin GTPase scaffold of dynein-dynactin motors triggers retrograde lysosome transport. J Cell Biol, 220, 1-19, 2021.
89. Diesenberg, K.; Beerbaum, M.; Fink, U.; Schmieder, P.; Krauss, M., SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci, 128, 397-407, 2015.
90. Hu, Y.; An, Y.; Fang, N.; Li, Y.; Jin, H.; Nazarali, A.; Ji, S., The optimization of soluble PTEN expression in Escherichia coli. Open Biochem J, 9, 42-48, 2015.
91. Manderson, D.; Dempster, R.; Chisti, Y., A recombinant vaccine against hydatidosis: production of the antigen in Escherichia coli. J Ind Microbiol Biotechnol, 33, 173-182, 2006.
92. Joshi, H.; Jain, V., Novel method to rapidly and efficiently lyse Escherichia coli for the isolation of recombinant protein. Anal Biochem, 528, 1-6, 2017.
93. Falgenhauer, E.; von Schonberg, S.; Meng, C.; Muckl, A.; Vogele, K.; Emslander, Q.; Ludwig, C.; Simmel, F. C., Evaluation of an E. coli cell extract prepared by lysozyme-assisted sonication via gene expression, Phage Assembly and Proteomics. Chembiochem, 22, 2805-2813, 2021.
94. David, C. S., Annual Reports in Medicinal Chemistry, Chapter 18 - molecular mechanism of action (MMoA) in drug discovery, Institute for Rare and Neglected Diseases Drug Discovery Belmont, USA, 301-317, 2011.
95. Srinivasan, B., A guide to enzyme kinetics in early drug discovery. FEBS J, 290, 2292-2305, 2023.
96. Terry, P. K., A Pharmacology Primer (Fifth Edition), Chapter 8 - The optimal design of pharmacological experiments, Elsevier, Netherlands, 207-243, 2019.
校內:2028-07-20公開