| 研究生: |
徐嘉敏 Syu, Jia-Min |
|---|---|
| 論文名稱: |
電紡絲奈米碳纖維與鎳鈷氧化物複合膜於鋰離子電池負極材料之研究 Studies of Electrospun Carbon Nanofiber/Ni-Co oxide Composites as Anodes for Lithium Ion Batteries |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 電紡絲奈米碳纖維 、鋰離子電池 、負極材料 、鎳/鈷氧化物 |
| 外文關鍵詞: | electrospun carbon nanofiber, lithium ion battery, anode material, nickel/cobalt oxide |
| 相關次數: | 點閱:127 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電紡絲法製備聚丙烯腈(polyacrylonitrile)奈米碳纖維,再以水熱法於纖維表面沉積氫氧化鎳/氫氧化鈷,分別在氮氣氣氛與空氣氣氛下,以不同熱處理溫度觀察其結構變化,並探討結構對於此碳纖維/鎳鈷複合膜之電化學表現。在氮氣氣氛下,複合膜在未經熱處理前,呈現片狀的氫氧化鎳/氫氧化鈷型態附著在纖維表面;經過200 oC熱處理後,複合膜由片狀轉變成為針狀結構,其組成仍為氫氧化物;經過300 oC熱處理後,轉變成為氧化鎳/氧化鈷針狀結構型態,但當在更高溫下的熱處理,纖維上的氧化鈷/氧化鎳會聚集且脫落。300 oC熱處理的樣品所呈現的氧化鎳/氧化鈷針狀結構,具有比片狀氫氧化鎳/氫氧化鈷更高的比表面積與孔洞結構,同時又擁有較佳導電性和氧化鎳/氧化鈷所提供的高理論電容值,因此擁有最佳的電化學效能,充放電測試顯示在150 mA/g電流密度下具有645 mAh/g的比電容量,循環壽命測試顯示在200 mA/g電流密度下循環100次仍具有553 mAh/g的比電容量。複合膜在空氣氣氛下熱處理,觀察到樣品在300 oC下呈現NiCo2O4薄片覆蓋於碳纖維表面,且具有許多孔洞,較多的中孔體積結構幫助鋰離子進入電極內部區域,400 oC熱處理後則出現聚集,但仍有一層NiCo2O4覆蓋於碳纖維之上。經電化學測試後,300 oC熱處理後的碳纖維擁有最佳的電化學效能,充放電測試顯示在150 mA/g電流密度下具有734 mAh/g的比電容量,循環壽命測試顯示在200 mA/g電流密度下循環100次仍具有595 mAh/g的比電容量,這歸因於NiCo2O4擁有比氫氧化鎳/氫氧化鈷更適合做為電極材料的特質,包含較高的理論電容值、高導電度使電子快速傳遞、高比表面積與中孔體積。
In this study, carbon nanofibers were prepared through the polyacrylonitrile precursor by electrospinning. Subsequently, binary nickel-cobalt compounds were co-precipitated on the fiber surface by using a hydrothermal approach. We varied the annealing temperature and environment (nitrogen and air) to study the structural change with the annealing conditions, and aimed at understanding the correlation between the structure and electrochemical performance of the composite fibers. The co-precipitation of Ni and Co resulted in Ni(OH)2/Co(OH)2 nanoflakes vertically attached on the fiber surface. In nitrogen atmosphere, Ni(OH)2/Co(OH)2 nanoflakes were converted to Ni(OH)2/Co(OH)2 nanoneedle at 200 °C. At 300 °C, the composite exhibited the structure composed of NiO/CoO nanoneedles. The NiO/CoO nanoneedles aggregated and peeled off from the fiber surface when annealed at a higher temperature. The composite with a needle-like structure exhibited the higher total pore volume, specific surface area, electrical conductivity, and NiO/CoO theoretical capacities, resulting in the better electrochemical performance than those with a flake-like structure. Galvanostatic chargedischarge tests revealed that the composites annealed at 300 oC delivered a specific capacity of 645 mAh/g at a current density of 150 mA/g. They also exhibited a specific capacity of 553 mAh/g at a current density of 200 mA/g for 100 cycles. By contrast, the composite fibers annealed at 300 °C in air atmosphere yielded the NiCo2O4 sheet-like structure on the fiber surface, and possessed rich pores, which facilitated lithium-ion transfer from electrolyte to the electrode. Annealing at 400 °C resulted in the NiCo2O4 aggregation, forming a thin layer on the fiber surface. Galvanostatic chargedischarge tests show that the composite annealed at 300 °C delivered a specific capacity of 734 mAh/g at a current density of 150 mA/g. The composite also exhibited a specific capacity of 595 mAh/g at a current density of 200 mA/g for 100 cycles. The favorable electrochemical performance indicated that carbon nanofiber/NiCo2O4 composite is more suitable than carbon nanofiber/Ni(OH)2/Co(OH)2 composite as the anode material. This was attributed to the characteristics of the carbon nanofiber/NiCo2O4 composite, including a high theoretical capacity, favorable electrical conductivity for fast electron transfer, high specific surface area, and rich mesopores.
[1] 黃可龍, 王兆翔, 劉素琴, "鋰離子電池原理與技術," 五南圖書出版公司, 2010.
[2] J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367, 2001.
[3] B. Scrosati and J. Garche, "Lithium batteries: Status, Prospects and Future," Journal of Power Sources, 195, 2419-2430, 2010.
[4] M. Wakihara, "Recent Developments in Lithium Ion Batteries," Materials Science & Engineering R-Reports, 33, 109-134, 2001.
[5] B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices," Science, 334, 928-935, 2011.
[6] R. A. Marsh, S. Vukson, S. Surampudi, B. V. Ratnakumar, M. C. Smart, M. Manzo, et al., "Li Ion Batteries for Aerospace Applications," Journal of Power Sources, 97-8, 25-27, 2001.
[7] T. Tanaka, K. Ohta, and N. Arai, "Year 2000 R&D Status of Large-Scale Lithium Ion Secondary Batteries in the National Project of Japan," Journal of Power Sources, 97-8, 2-6, 2001.
[8] A. Ritchie and W. Howard, "Recent Developments and Likely Advances in Lithium-Ion Batteries," Journal of Power Sources, 162, 809-812, 2006.
[9] B. Xu, D. Qian, Z. L. Wang, and Y. J. Meng, "Recent Progress in Cathode Materials Research for Advanced Lithium Ion Batteries," Materials Science & Engineering R-Reports, 73, 51-65, 2012.
[10] S. Chattopadhyay, A. L. Lipson, H. J. Karmel, J. D. Emery, T. T. Fister, P. A. Fenter, et al., "In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode," Chemistry of Materials, 24, 3038-3043, 2012.
[11] J. B. G., H. D. A, and M. V. B., "Basic Research Needs for Electrical Energy Storage," 2007.
[12] R. E. Franklin, "Crystallite Growth in Graphitizing and Non-Graphitizing Carbons," Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 209, 196-&, 1951.
[13] J. J. Kipling, J. N. Sherwood, P. V. Shooter, and N. R. Thompson, "The Pore Structure and Surface Area of High-Temperature Polymer Carbons," Carbon, 1, 321-328, 1964.
[14] M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, "A Review of Heat Treatment on Polyacrylonitrile Fiber," Polymer Degradation and Stability, 92, 1421-1432, 2007.
[15] Y. Z. Wu, C. V. R. Bobba, and S. Ramakrishna, "Research and Application of Carbon Nanofiber and Nanocomposites via Electrospinning Technique in Energy Conversion Systems," Current Organic Chemistry, 17, 1411-1423, 2013.
[16] C. Tekmen, Y. Tsunekawa, and H. Nakanishi, "Electrospinning of Carbon Nanofiber Supported Fe/Co/Ni Ternary Alloy Nanoparticles," Journal of Materials Processing Technology, 210, 451-455, 2010.
[17] L. F. Zhang, A. Aboagye, A. Kelkar, C. L. Lai, and H. Fong, "A Review: Carbon Nanofibers from Electrospun Polyacrylonitrile and Their Applications," Journal of Materials Science, 49, 463-480, 2014.
[18] D. H. Reneker and I. Chun, "Nanometre Diameter Fibres of Polymer, Produced by Electrospinning," Nanotechnology, 7, 216-223, 1996.
[19] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, "The Change of Bead Morphology Formed on Electrospun Polystyrene Fibers," Polymer, 44, 4029-4034, 2003.
[20] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, "Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films," Polymer, 40, 7397-7407, 1999.
[21] D. Zhu, C. Y. Xu, N. Nakura, and M. Matsuo, "Study of Carbon Films from PAN/VGCF Composites by Gelation/Crystallization from Solution," Carbon, 40, 363-373, 2002.
[22] E. Fitzer, W. Frohs, and M. Heine, "Optimization of Stabilization and Carbonization Treatment of PAN Fibers and Structural Characterization of the Resulting Carbon-fibers," Carbon, 24, 387-395, 1986.
[23] J. Mittal, O. P. Bahl, and R. B. Mathur, "Single Step Carbonization and Graphitization of Highly Stabilized PAN Fibers," Carbon, 35, 1196-1197, 1997.
[24] F. Rodriguezreinoso and M. Molinasabio, "Activated Carbons from Lignocellulosic Materials by Chemical and/or Physical Activation: an Overview," Carbon, 30, 1111-1118, 1992.
[25] L. Wang, Y. Yu, P. C. Chen, D. W. Zhang, and C. H. Chen, "Electrospinning Synthesis of C/Fe3O4 Composite Nanofibers and Their Application for High Performance Lithium-Ion Batteries," Journal of Power Sources, 183, 717-723, 2008.
[26] C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, et al., "Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries," Advanced Functional Materials, 16, 2393-2397, 2006.
[27] X. H. Wang, M. Zhang, E. Z. Liu, F. He, C. S. Shi, C. N. He, et al., "Three-Dimensional Core-Shell Fe2O3@Carbon/Carbon Cloth as Binder - Free Anode for the High - Performance Lithium - Ion Batteries," Applied Surface Science, 390, 350-356, 2016.
[28] W. H. Li, M. S. Li, M. Wang, L. C. Zeng, and Y. Yu, "Electrospinning with Partially Carbonization in Air: Highly Porous Carbon Nanofibers Optimized for High-Performance Flexible Lithium-Ion Batteries," Nano Energy, 13, 693-701, 2015.
[29] Y. Bai, M. M. Liu, J. Sun, and L. Gao, "Fabrication of Ni-Co Binary Oxide/Reduced Graphene Oxide Composite with High Capacitance and Cyclicity as Efficient Electrode for Supercapacitors," Ionics, 22, 535-544, 2016.
[30] V. R. Shinde, S. B. Mahadik, T. P. Gujar, and C. D. Lokhande, "Supercapacitive Cobalt Oxide (Co3O4) Thin Films by Spray Pyrolysis," Applied Surface Science, 252, 7487-7492, 2006.
[31] G. M. Zhou, C. Wu, Y. H. Wei, C. L. Li, Q. Lian, C. Cui, et al., "Tufted NiCo2O4 Nanoneedles Grown on Carbon Nanofibers with Advanced Electrochemical Property for Lithium Ion Batteries," Electrochimica Acta, 222, 1878-1886, 2016.
[32] J. Z. Zhao, Z. L. Tao, J. Liang, and J. Chen, "Facile Synthesis of Nanoporous Gamma-MnO2 Structures and Their Application in Rechargeable Li-Ion Batteries," Crystal Growth & Design, 8, 2799-2805, 2008.
[33] B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. V. S. Rao, et al., "Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery," Chemistry of Materials, 20, 3360-3367, 2008.
[34] W. L. Yao, J. Yang, J. L. Wang, and Y. Nuli, "Multilayered Cobalt Oxide Platelets for Negative Electrode Material of a Lithium-Ion Battery," Journal of the Electrochemical Society, 155, A903-A908, 2008.
[35] P. Novak, K. Muller, K. S. V. Santhanam, and O. Haas, "Electrochemically Active Polymers for Rechargeable Batteries," Chemical Reviews, 97, 207-281, 1997.
[36] P. Poizot, S. Laruelle, S. Grugeon, and J. M. Tarascon, "Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds Toward Li," Journal of the Electrochemical Society, 149, A1212-A1217, 2002.
[37] Z. S. Wu, G. M. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, "Graphene/Metal Oxide Composite Electrode Materials for Energy Storage," Nano Energy, 1, 107-131, 2012.
[38] V. Bartunek, S. Huber, D. Sedmidubsky, Z. Sofer, P. Simek, and O. Jankovsky, "CoO and Co3O4 Nanoparticles with a Tunable Particle Size," Ceramics International, 40, 12591-12595, 2014.
[39] J. Zhang, F. Liu, J. P. Cheng, and X. B. Zhang, "Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature," Acs Applied Materials & Interfaces, 7, 17630-17640, 2015.
[40] C. Liu, C. L. Li, K. Ahmed, Z. Mutlu, C. S. Ozkan, and M. Ozkan, "Template Free and Binderless NiO Nanowire Foam for Li-Ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability," Scientific Reports, 6, 8, 2016.
[41] K. Z. Cao, L. F. Jiao, Y. C. Liu, H. Q. Liu, Y. J. Wang, and H. T. Yuan, "Ultra-High Capacity Lithium-Ion Batteries with Hierarchical CoO Nanowire Clusters as Binder Free Electrodes," Advanced Functional Materials, 25, 1082-1089, 2015.
[42] X. H. Huang, J. B. Wu, R. Q. Guo, Y. Lin, and P. Zhang, "Aligned Nickel-Cobalt Oxide Nanosheet Arrays for Lithium Ion Battery Applications," International Journal of Hydrogen Energy, 39, 21399-21404, 2014.
[43] X. J. Zhu, Y. W. Zhu, S. Murali, M. D. Stollers, and R. S. Ruoff, "Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries," Acs Nano, 5, 3333-3338, 2011.
[44] S. Chaudhari, D. Bhattacharjya, and J. S. Yu, "Facile Synthesis of Hexagonal NiCo2O4 Nanoplates as High-Performance Anode Material for Li-Ion Batteries," Bulletin of the Korean Chemical Society, 36, 2330-2336, 2015.
[45] C. C. Hu, Y. S. Lee, and T. C. Wen, "The Physicochemical/Electrochemical Properties of Binary Ni–Co Oxides," Materials Chemistry and physics, 48, 246-254, 1997.
[46] L. Huang, D. C. Chen, Y. Ding, S. Feng, Z. L. Wang, and M. L. Liu, "Nickel-Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors," Nano Letters, 13, 3135-3139, 2013.
[47] D. Y. Zhang, H. L. Yan, Y. Lu, K. W. Qiu, C. L. Wang, C. C. Tang, et al., "Hierarchical Mesoporous Nickel Cobaltite Nanoneedle/Carbon Cloth Arrays as Superior Flexible Electrodes for Supercapacitors," Nanoscale Research Letters, 9, 9, 2014.
[48] J. W. Xiao and S. H. Yang, "Sequential crystallization of sea urchin-like bimetallic (Ni,Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors," Rsc Advances, 1, 588-595, 2011.
[49] Y. H. Wei, F. L. Yan, X. Tang, Y. Z. Luo, M. Zhang, W. F. Wei, et al., "Solvent-Controlled Synthesis of NiO-CoO/Carbon Fiber Nanobrushes with Different Densities and Their Excellent Properties for Lithium Ion Storage," Applied Materials & Interfaces, 7, 21703-21711, 2015.
[50] M. Zhang, E. Uchaker, S. J. Hu, Q. Zhang, T. Wang, G. Z. Cao, et al., "CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties," Nanoscale, 5, 12342-12349, 2013.
[51] G. Q. Zhang and X. W. Lou, "Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors," Scientific Reports, 3, 6, 2013.
[52] H. Qiao, L. F. Xiao, Z. Zheng, H. W. Liu, F. L. Jia, and L. Z. Zhang, "One-Pot Synthesis of CoO/C Hybrid Microspheres as Anode Materials for Lithium-Ion Batteries," Journal of Power Sources, 185, 486-491, 2008.
[53] B. Philippe, R. Dedryvere, J. Allouche, F. Lindgren, M. Gorgoi, H. Rensmo, et al., "Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy," Chemistry of Materials, 24, 1107-1115, 2012.
[54] H. L. Yan, D. Y. Zhang, J. Y. Xu, Y. Lu, Y. X. Liu, K. W. Qiu, et al., "Solution Growth of NiO Nanosheets Supported on Ni Foam as High-Performance Electrodes for Supercapacitors," Nanoscale Research Letters, 9, 7, 2014.
[55] Y. Yang, F. Simeon, T. A. Hatton, and G. C. Rutledge, "Polyacrylonitrile-Based Electrospun Carbon Paper for Electrode Applications," Journal of Applied Polymer Science, 124, 3861-3870, 2012.
[56] D. Y. Pan, S. Wang, B. Zhao, M. H. Wu, H. J. Zhang, Y. Wang, et al., "Li Storage Properties of Disordered Graphene Nanosheets," Chemistry of Materials, 21, 3136-3142, 2009.
[57] P. Guo, H. H. Song, and X. H. Chen, "Electrochemical Performance of Graphene Nanosheets as Anode Material for Lithium-Ion Batteries," Electrochemistry Communications, 11, 1320-1324, 2009.
[58] R. T. Wang and X. B. Yan, "Superior Asymmetric Supercapacitor Based on Ni-Co Oxide Nanosheets and Carbon Nanorods," Scientific Reports, 4, 9, 2014.
[59] L. J. Xie, Z. A. Hu, C. X. Lv, G. H. Sun, J. L. Wang, Y. Q. Li, et al., "CoxNi1-x Double Hydroxide Nanoparticles with Ultrahigh Specific Capacitances as Supercapacitor Electrode Materials," Electrochimica Acta, 78, 205-211, 2012.
[60] A. L. Soares, A. L. Lorenzen, A. Schmidt, and M. Vidotti, "Evaluation of the Electrocatalytical Properties of NiCo(OH)2 Composite Modified Electrodes," Journal of Electroanalytical Chemistry, 765, 126-131, 2016.
[61] C. Kim, S. H. Park, J. K. Cho, D. Y. Lee, T. J. Park, W. J. Lee, et al., "Raman Spectroscopic Evaluation of Polyacrylonitrile-Based Carbon Nanofibers Prepared by Electrospinning," Journal of Raman Spectroscopy, 35, 928-933, 2004.
[62] X. H. Su, H. Chai, D. Z. Jia, S. J. Bao, W. Y. Zhou, and M. L. Zhou, "Effective Microwave-Assisted Synthesis of Graphene Nanosheets/NiO Composite for High-Performance Supercapacitors," New Journal of Chemistry, 37, 439-443, 2013.
[63] Z. S. Wu, X. H. Huang, Z. L. Wang, J. Xu, H. W. Wang, and X. B. Zhang, "Electrostatic Induced Stretch Growth of Homogeneous β-Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors," Scientific Reports, 4, 3669, 2014.
[64] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, et al., "General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy," Applied Physics Letters, 88, 3, 2006.
[65] A. C. Ferrari, "Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects," Solid State Communications, 143, 47-57, 2007.
[66] Z. Y. Ryu, J. T. Zheng, M. Z. Wang, and B. J. Zhang, "Characterization of Pore Size Distributions on Carbonaceous Adsorbents by DFT," Carbon, 37, 1257-1264, 1999.
[67] C. S. Wang, A. J. Appleby, and F. E. Little, "Irreversible Capacities of Graphite Anode for Lithium-Ion Batteries," Journal of Electroanalytical Chemistry, 519, 9-17, 2002.
[68] R. C. Li, Z. X. Hu, X. F. Shao, P. P. Cheng, S. S. Li, W. D. Yu, et al., "Large Scale Synthesis of NiCo Layered Double Hydroxides for Superior Asymmetric Electrochemical Capacitor," Scientific Reports, 6, 9, 2016.
[69] E. Higuchi, H. Otsuka, M. Chiku, and H. Inoue, "Effect of Pretreatment on the Surface Structure of a Co(OH)2 Electrode," Journal of Power Sources, 248, 762-768, 2014.
[70] Z. J. Jiang and Z. Q. Jiang, "Interaction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions," Scientific Reports, 6, 14, 2016.
[71] Y. F. Tang, Y. Y. Liu, W. C. Guo, S. X. Yu, and F. M. Gao, "Floss-like Ni-Co Binary Hydroxides Assembled by Whisker-Like Nanowires for High-Performance Supercapacitor," Ionics, 21, 1655-1663, 2015.
[72] R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, and J. M. Tarascon, "Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO Toward Lithium," Chemistry of Materials, 16, 1056-1061, 2004.
[73] G. Y. Zhou, T. R. Xiong, S. J. He, Y. H. Li, Y. M. Zhu, and H. Q. Hou, "Asymmetric Supercapacitor Based on Flexible TiC/CNF Felt Supported Interwoven Nickel-Cobalt Binary Hydroxide Nanosheets," Journal of Power Sources, 317, 57-64, 2016.
[74] K. S. Kim and N. Winograd, "X-Ray Photoelectron Spectroscopic Studies Of Nickel-Oxygen Surfaces Using Oxygen and Argon Ion-Bombardment," Surface Science, 43, 625-643, 1974.
[75] D. Y. Deng, X. X. Xing, N. Chen, Y. X. Li, and Y. D. Wang, "Hydrothermal Synthesis of Beta-Co(OH)2 Nanoplatelets: A Novel Catalyst for CO Oxidation," Journal of Physics and Chemistry of Solids, 100, 107-114, 2017.
[76] J. Yan, W. Sun, T. Wei, Q. Zhang, Z. J. Fan, and F. Wei, "Fabrication and Electrochemical Performances of Hierarchical Porous Ni(OH)2 Nanoflakes Anchored on Graphene Sheets," Journal of Materials Chemistry, 22, 11494-11502, 2012.
[77] W. H. Ryu, J. W. Shin, J. W. Jung, and I. D. Kim, "Cobalt(II) Monoxide Nanoparticles Embedded in Porous Carbon Nanofibers as a Highly Reversible Conversion Reaction Anode for Li-Ion Batteries," Journal of Materials Chemistry A, 1, 3239-3243, 2013.
[78] Y. M. Zhu and C. Cao, "Remarkable Electrochemical Lithium Storage Behaviour of Two-Dimensional Ultrathin Alpha-Ni(OH)(2) Nanosheets," Rsc Advances, 5, 83757-83763, 2015.
[79] A. Pramanik, S. Maiti, and S. Mahanty, "β-Ni(OH)2 Nanoflowers as Anode Material for Lithium-Ion Battery," Science Letters Journal, 4, 104, 2015.
[80] S. G. Hwang, G. O. Kim, S. R. Yun, and K. S. Ryu, "NiO nanoparticles with plate structure grown on graphene as fast charge-discharge anode material for lithium ion batteries," Electrochimica Acta, 78, 406-411, 2012.
[81] R. Yazami, "Surface Chemistry and Lithium Storage Capability of the Graphite-Lithium Electrode," Electrochimica Acta, 45, 87-97, 1999.
[82] P. S. Kumar, R. Sahay, V. Aravindan, J. Sundaramurthy, W. C. Ling, V. Thavasi, et al., "Free-Standing Electrospun Carbon Nanofibres - a High Performance Anode Material for Lithium-Ion Batteries," Journal of Physics D-Applied Physics, 45, 5, 2012.
[83] P. R. Martins, A. L. A. Parussulo, S. H. Toma, M. A. Rocha, H. E. Toma, and K. Araki, "Highly Stabilized Alpha-NiCo(OH)(2) Nanomaterials for High Performance Device Application," Journal of Power Sources, 218, 1-4, 2012.
[84] H. Kim, G. O. Park, Y. Jang, Y. Kim, S. Muhammad, and H. Lee, "The Novel Study on the Reaction Mechanism and Structural Changes of Co(OH)2 By Using Synchrotron X-Ray Techniques," 2014.
[85] L. W. Ji and X. W. Zhang, "Fabrication of Porous Carbon Nanofibers and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries," Nanotechnology, 20, 7, 2009.
[86] Y. F. Wang and L. J. Zhang, "Simple Synthesis of CoO-NiO-C Anode Materials for Lithium-Ion Batteries and Investigation on Its Electrochemical Performance," Journal of Power Sources, 209, 20-29, 2012.
[87] Z. W. Zhang, Q. Li, Z. Q. Li, J. Y. Ma, C. X. Li, L. W. Yin, et al., "Partially Reducing Reaction Tailored Mesoporous 3D Carbon Coated NiCo-NiCoO2/Carbon Xerogel Hybrids as Anode Materials for Lithium Ion Battery with Enhanced Electrochemical Performance," Electrochimica Acta, 203, 117-127, 2016.
[88] I. R. M. Kottegoda, N. H. Idris, L. Lu, J. Z. Wang, and H. K. Liu, "Synthesis and Characterization of Graphene-Nickel Oxide Nanostructures for Fast Charge-Discharge Application," Electrochimica Acta, 56, 5815-5822, 2011.
[89] B. J. Li, H. Q. Cao, J. Shao, G. Q. Li, M. Z. Qu, and G. Yin, "Co3O4@graphene Composites as Anode Materials for High-Performance Lithium Ion Batteries," Inorganic Chemistry, 50, 1628-1632, 2011.
[90] M. Zhang, R. C. Li, X. Chang, C. Xue, and X. Gou, "Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium- ion batteries and oxygen reduction reaction," Journal of Power Sources, 290, 25-34, 2015.
[91] W. W. Yuan, J. Zhang, D. Xie, Z. M. Dong, Q. M. Su, and G. H. Du, "Porous CoO/C Polyhedra as Anode Material for Li-Ion Batteries," Electrochimica Acta, 108, 506-511, 2013.
[92] X. H. Huang, J. P. Tu, C. Q. Zhang, X. T. Chen, Y. F. Yuan, and H. M. Wu, "Spherical NiO-C Composite for Anode Material of Lithium Ion Batteries," Electrochimica Acta, 52, 4177-4181, 2007.
[93] J. Yang, J. B. Li, H. Lin, X. Z. Yang, X. G. Tong, and G. F. Guo, "A Novel Preparation Method for NiCo2O4 Electrodes Stacked with Hexagonal Nanosheets for Water Electrolysis," Journal of Applied Electrochemistry, 36, 945-950, 2006.
[94] E. Umeshbabu, G. Rajeshkhanna, P. Justin, and G. R. Rao, "Magnetic, Optical and Electrocatalytic Properties of Urchin and Sheaf-Like NiCo2O4 Nanostructures," Materials Chemistry and Physics, 165, 235-244, 2015.
[95] S. Abouali, M. A. Garakani, Z. L. Xu, and J. K. Kim, "NiCo2O4/CNT Nanocomposites as Bi-Functional Electrodes for Li Ion Batteries and Supercapacitors," Carbon, 102, 262-272, 2016.
[96] L. F. Hu, L. M. Wu, M. Y. Liao, X. H. Hu, and X. S. Fang, "Electrical Transport Properties of Large, Individual NiCo2O4 Nanoplates," Advanced Functional Materials, 22, 998-1004, 2012.
[97] J. M. Xu, L. He, W. Xu, H. B. Tang, H. Liu, T. Han, et al., "Facile Synthesis of Porous NiCo2O4 Microflowers as High-Performance Anode Materials for Advanced Lithium-Ion Batteries," Electrochimica Acta, 45, 185-192, 2014.
[98] L. L. Li, Y. Cheah, Y. W. Ko, P. Teh, G. Wee, C. L. Wong, et al., "The Facile Synthesis of Hierarchical Porous Flower-Like NiCo2O4 with Superior Lithium Storage Properties," Journal of Materials Chemistry A, 1, 10935-10941, 2013.
[99] Y. NuLi, P. Zhang, Z. P. Guo, H. K. Liu, and J. Yang, "NiCo2O4/C Nanocomposite as a Highly Reversible Anode Material for Lithium-Ion Batteries," Electrochemical and Solid-State Letters, 11, A64-A67, 2008.
[100] J. P. Cheng, Y. Lu, K. W. Qiu, H. L. Yan, J. Xu, L. Han, et al., "Hierarchical Core/Shell NiCo2O4@ NiCo2O4 Nanocactus Arrays with Dual- Functionalities for High Performance Supercapacitors and Li-Ion Batteries," Scientific reports, 5, 12099, 2015.
[101] J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, and Y. T. Qian, "High Electrochemical Performance of Monodisperse NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries," Applied Materials & Interfaces, 5, 981-988, 2013.
[102] C. F. Zhang and J. S. Yu, "Morphology-Tuned Synthesis of NiCo2O4-Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries," Chemistry- European Journal, 22, 4422-&, 2016.
[103] Y. D. Mo, Q. Ru, J. F. Chen, X. Song, L. Y. Guo, S. J. Hu, et al., "Three- Dimensional NiCo2O4 Nanowire Arrays: Preparation and Storage Behavior for Flexible Lithium-Ion and Sodium-Ion Batteries with Improved Electrochemical Performance," Journal of Materials Chemistry A, 3, 19765-19773, 2015.
校內:2022-07-01公開