| 研究生: |
王建普 Wang, Cheng-Pu |
|---|---|
| 論文名稱: |
以多體模擬搭配圖形處理器模擬基本電漿物理中的庫倫力 N-body Coulomb Force Simulation of Basic Plasma Physics by GPU Computing |
| 指導教授: |
西村泰太郎
Yasutaro Nishimura |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 多體模擬 、德拜屏蔽 、微粒電漿 、湯川電位 、電漿製程 |
| 外文關鍵詞: | N-body, Debye shielding, dusty plasma, Yukawa potential, plasma processing |
| 相關次數: | 點閱:91 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於三維靜電自相關力學建立了分子動力學或多體模擬方法的計算工具,研究了庫侖力的基本性質。使用多體模擬,研究了兩個粒子之間的庫侖碰撞,觀察了具有多個粒子的小角度散射的庫侖碰撞。量測位能和動能的關係以驗證計算。在庫侖力中併入了一個軟化參數,以避免在極小的粒子與粒子距離之間的數值困難。多體仿真模型擴展到研究微粒電漿等的動力學。大量負電荷粒子被用於我們的模擬。對於微粒電漿研究,納入了現象學的湯川電位。在微粒電漿研究中,電漿鞘層的外加力被用於電容耦合電漿中觀察到的系統,其被廣泛地用於工業電漿處理中。本研究的第二部分旨在根據庫侖力和重力之間的平衡以及在微重力實驗中由離子流引起的空隙形成來研究灰塵等離子體現象,如微粒電漿結晶。
A computational tool for molecular dynamics or N-body simulation method is built based on three-dimensional electrostatic self-consistent force to study basic nature of Coulomb force. Employing the N-body simulation, a Coulomb collision between two particles, Coulomb collisions with small angled deflection incorporating multiple particles are investigated. The relation of potential and kinetic energy is diagnosed to validate the computation. A softening parameter is incorporated in the Coulomb force to avoid numerical difficulties at an extremely small particle to particle distance. The N-body simulation model is extended to study dynamics of dusty plasmas. Massively negative charged particles are employed into our simulation. For the dusty plasma studies, phenomenological Yukawa potential is incorporated. In the dusty plasma study external electric sheath force is employed artificially into our system typically observed in capacitively coupled plasma which is widely used in industrial plasma processing. The second part of the study aims at investigating the dusty plasma phenomena such as crystallization based on the balance between Coulomb force and gravitational force, as well as void formation induced by ion flow in micro-gravity experiments.
[1] M. A. Liebermann and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. (John Wiley and Sons, Hoboken, 2005), pp. 1-5, pp. 571-579.
[2] A. Bouchoule, Dusty Plasmas. (Wiley, New York, 1999), pp. 1-38.
[3]H. Goldsten, Classical Mechanics, 2^nd ed. (Addison Wesly, Boston, 1980), pp.70-98.
[4] D. R. Nicholson, Introduction to Plasma Theory, 2^nd ed. (Krieger, Malabar, 1992), pp. 1-14.
[5] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2^nd ed. (Plenum, New York,1974), pp. 1-12., pp. 290-296.
[6] P. Debye and E. Hückel , “The theory of electrolytes. I. Lowering of freezing point and related phenomena,” Phys. Z. 24, pp. 185–206 (1923).
[7] J. D. Callen (2003, August, 12). Chapter 1. Collective Plasma Phenomena [online]. Available: http://homepages.cae.wisc.edu/~callen/chap1.pdf.
[8] H. Thomas, G. E. Morfill, and V. Demmel, “Plasma crystal: Coulomb crystallization in a dusty plasma,” Phys. Rev. Lett. 73, pp. 652-655 (1994).
[9] S. Nunomura, N. Ohno, and S. Takamura, “Confinement and structure of electrostatically coupled dust clouds in a direct current plasma–sheath,” Phys. Plasmas 5, 3517 (1998).
[10] R. L. Merlino, Plasma Physics Applied, edited by C. Grabbe. (Transworld research network, Kerala, India, 2006), pp. 73-110.
[11] S. Aarseth, Gravitational N-body Simulations: Tools and Algorithms. (Cambridge University Press, Cambridge, UK, 2003), pp. 1-17.
[12] K. Yamamoto, Y. Mizuno, S. Hibino, H. Inuzuka, Y. Cao, Y. Liu, and K. Yazawa, “Simulations of dusty plasmas using a special-purpose computer system designed for gravitational n-body problems,” Phys. Plasmas 13, 012106 (2006).
[13] Y. C. Chen, “Particle-in-cell Simulation of Capacitively Coupled Plasma in The Presence of Coulomb Collision and Secondary Electron Emission ”, Master’s thesis, National Cheng Kung University (2015).
[14] J. D. Callen (2006, July, 22). Chapter 2. Coulomb Collisions [online]. Available: http://homepages.cae.wisc.edu/~callen/chap2.pdf.
[15] D. Playne, M. Johnson, and K. Hawick. “Benchmarking GPU devices with n-body simulations” in Proc. 2009 International Conference on Computer Design (CDES 09) July, Las Vegas, USA. , no. CSTN-077, 2009.
[16] L. Nyland, M. Harries, and J. Prins. GPU Gems 3, edited by H. Nguyen. (Pearson Education, Inc., Upper Saddle River, NJ, 2008), Chap. 31.
[17] CUDA C-Programming Guide V5.0” (NVIDIA Corporation, 2012), see www.nvidia.com.
[18] V. A. Godyak and R. B. Piejak, “Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz,” Phys. Rev. Lett. 65, 996 (1990).
[19] H. Curtis, Orbital Mechanics for Engineering Students, 2^nd ed. (Butterworth-Heinemann, Oxford, UK, 2010), pp. 59-123.
[20] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. (Cambridge University Press, Cambridge, UK, 1988), pp. 90-91.
[21] J. Goree, G. E. Morfill, V. N. Tsytovich, and S. V. Vladimirov, “Theory of Dust Voids in Plasma,” Phys. Rev. E 59, 7055 (1999).
[22]A. Piel, “Molecular Dynamics Simulation of Ion flows Around Microparticles,” Phys. Plasma 24, 033712 (2017).
[ 23] K. Miyamoto, Plasma Physics For Nuclear Fusion, 2^nd ed. (MIT Press, Cambridge, 1989), pp.483.