| 研究生: |
曾杞良 Tseng, Ji-Liang |
|---|---|
| 論文名稱: |
白光LED老化對色度及輝度影響之研究 A Study of the effect of aging on color and brightness of white LEDs |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 白光LED 、田口實驗 、老化實驗 |
| 外文關鍵詞: | White LEDs, Taguchi method, aging |
| 相關次數: | 點閱:142 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著白光LED的發展,價格的降低及亮度的提升,顯示器的背光源也由傳統的CCFL(冷陰極螢光燈),逐漸替換成白光LED;產品也由行動電話擴大到平板電腦、筆記型電腦及高階的大型顯示器。
本研究主要對象為GnInA藍光LED Chip激發黃光螢光體(YAG)之白光LED, 探討其對色度因Chip本身主波長的些微變化,及黃光螢光體激發時產生的變化,對不同色度座標(BIN CODE)之影響,及白光LED 因熱效應及隨時間劣化產生的色度飄移及輝度衰減現象,並瞭解其色度座標的偏移型態及其輝度的影響程度。
首先,運用田口實驗探討白光LED在封裝過程中,可能對LED輝度的影響因子。設定控制因子以及干擾因子,以A~H 8種控制因子及三種水準進行實驗,找出S/N比反應最大的因子,再經過優化設計來取得較適之生產條件。
其次,本研究運用統計方法,針對不同粉體配方之白光LED進行長時間1000小時高溫劣化實驗,以驗證不同配方的情況下,輝度與色度衰落變化之一致性,以做為LED背光模組採取混BIN 之參考。
本研究結果顯示,螢光粉體依據本實驗所設定的A~H的影響因子中,有以下結果:
一、以A螢光粉體的尺寸、B配方及C螢光粉體散佈等三項影響因子, 其影響輝度變化較為明顯。
二、最佳化條件與原始條件不同
A.螢光體粒徑15µm優於粒徑25µm:此部分可能因螢光粉體中之增感劑(Activator),因粒徑變小後,其表面積增大,使增感劑在進行能量傳導時,更能激發鄰近的螢光主晶格,使能量傳遞更有效率。
B.螢光粉體散佈方式,以沉底方式較佳:沉底方式可能因距離LED Chip 較為接近,激發之能量較大所造成,可印證目前於LED封裝廠,有傾向於沉底的封裝模式。
三、不同的螢光粉體配方,經過1000小時h老化,其輝度經檢定無法拒絕虛無假設,輝度仍可視為一致,可做為顯示器白光LED混Bin方式之參考。
四、在進行白光LED老化實驗時,發現白光LED色度變異不明顯,色度雖有變化,然其變化ΔE仍低於1.5,為第二級別色差,肉眼尚無法分辨,因此做為顯示器白光LED以混Bin方式評估時,如本實驗選用的LED色塊,雖為不同螢光粉體配方製成,但其驗證結果顯示,此兩色塊LED確能進行混BIN。
In recent years with the development of white LEDs, lower prices and enhanced brightness, backlights for displays are gradually shifted from the traditional CCFLs (cold cathode florescent lights) to white LEDs. The products include mobile phones, tablet PCs and Notebook PCs, high-end monitors and high-performance displays.
In This study, major investigations are focused to white LEDs made from yellow phosphor (YAG) and GnInA blue light LED chips. The chromaticity of the chip itself, the slight change of the dominant wavelength, and the yellow phosphor excited light may induce some changes and can result in different chromaticity coordinates (BIN CODE) LED. Thus, this study explores the related impact of thermal aging on the chromaticity drift and brightness attenuation of white LEDs, and to determine the chromaticity coordinate offset direction and brightness change.
Firstly, the Taguchi method is used to determine the significant manufacturing factors affecting the performance of white LEDs. A total of eight control factors designated by A~H with three variation levels is explored to find out S/N ratios to determine the optimum production conditions.
Secondly, the MINI TAB statistical tool is used to determine statistical significance of process variations. White LEDs of different formulations of phosphor powders using 1000-hr high temperature degradation tests are used to verify the consistency of different powder formulations, the brightness decay and chromaticity changes to determine whether the differences are significant or not when taking as an LED backlight module using mixed BIN components.
The key results are as follows:
1. The size, composition and spreading locations of phosphor powders are significant affecting factors.
2. The optimum production conditions are:
(a) Phosphor particle size of 15 µm, probably due to the increased surface area of the sensitizer (activator) to stimulate the adjacent fluorescent host lattice and make energy transfer more efficient.
(b) Fluorescent powders spreading at the bottom is better as they are closer to the LED chip and can stimulate better energy conversions of the activators.
3. The brightness of LEDs with different phosopher powder formulations after 1000-hr aging shows no significant variation, implying that LEDs from mixed bins can be used together as a display light source
In addition, the color variation of white LEDs after 1000-hr aging is not significant. Light chromaticity, despite changes, the change in terms of ΔE is less than 1.5 which can not be distinguished by the naked eyes Therefore, LEDs from different bins can be mixed for the application of backlights in displays.
[1] “From Wikipedia, the free encyclopedia”`, http://en.wikipedia.org/ wiki/ Incandescent_light_bulb
[2] “More Arcs 'n Sparks!, http://205.243.100.155/frames/longarc.htm
[3]張晉凱(2009),高功率發光二極體高溫加速老化之失效分析,國立屏東科技大學生物機電工程系所碩士論文。
[4]羅元村(2007),高功率藍光發光二極體高溫加速老化光場及電性研究,國立中山大學光電工程研究所碩士論文。
[5]林育寬(2006),高功率發光二極體高溫加速老化之失效分析,國立中山大學機械與機電工程學系研究所碩士論文。
[6] Yanagisawa, T. and Kojima, T. (2004) ” Long-term accelerated current operation of white light-emitting diodes “Journal of Luminescence, vol. 114, issue 1, pp. 39-42。
[7]羅正忠 審閱/許招墉 譯(2004),”最新圖解半導體製程”,東芝セミコンダクタ-社,普林斯頓國際。
[8]史光國編著(2010),” 半導體發光二極體及固體照明(第二版)”,全華科技
[9]李正中、楊宗勳、國立中央大學光電學系(2008),”光電科技概論”,五南出版社。
[10]陳隆建(2010),發光二極體之原理與製程(第三版),全華科技。
[11]蔡國猷(1992),發光二極體基礎技術,建興出版社。
[12] 劉如熹、劉宇桓(2006),”發光二極體用氧氮螢光粉介紹”,全華科技
[13]Skoog, D. A, Holler, F. J. and Niemem, T. A. (1988), Principle of Instrumental Analysis, Harcourt Brace &Company, Orlando.
[14]徐敘瑢 蘇勉曾(2004),”發光學及發光材料”,化學工業出版社
[15]蔡俊欽(2009),”高功率藍光發光二極體模組光功率與光場高溫老化可靠度之研究”,國立中山大學光電工程研究所博士論文。
[16] Nakamura, S., Mukai, T. and.Senoh, M. (1994), ”Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Applied Physics Letters, vol.64, pp 1687-1689
[17] Nakamura, S.,, Mukai, T. and Fasol, G. (1997), The blue laser diodes,Springer,
Berlin。
[18]大田登,陳鴻興 陳詩涵編譯,”色彩工程學:理論與應用”,全華科技。
[19]李輝煌(2012),” 田口方法-品質設計的原理與實務 第四版”,高立圖書。
[20]彭定國、吳鴻錚、鄭大興(2006),” MINITAB統計分析與應用",新文京出版社。