| 研究生: |
李立偉 Umi Saadah |
|---|---|
| 論文名稱: |
塗佈水性防火漆之鋼簡支樑火害行為研究 Fire Behavior of Simply Supported Beams with Water-Based Intumescent Fire-Resistance Mastic Coating |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 耐火性 、膨脹型塗料 、熱性能 、截面係數 |
| 外文關鍵詞: | Fire-resistance, Intumescent coatings, Thermal behavior, Section factors |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
受保護鋼梁在火災荷載下的結構性能是結構工程研究的一個重要領域,特別是在耐火性是主要設計要求的結構中。 對鋼梁進行絕緣是為了防止其達到臨界溫度,這可能會導致其劣化並最終失效。 在此分析中,檢查了受保護鋼梁在與實驗數據相同的火災荷載下的熱性能,並與試驗結果進行了比較。 考慮了在火災荷載下影響受保護鋼梁結構性能的方面,以及用於確保其耐火性的程序。 為了模擬高溫實驗研究,使用商用軟件 ANSYS 創建了非線性三維有限元 (FE) 模型。 通過將數值解與實驗數據進行比較來驗證測試結果。 應將所有四個帶有簡單支撐樣本的受保護鋼梁相互比較,以便了解所有可能的情況。 之後,對樣品進行了測試,以確定它們的機械性能以及截面因素在高溫下如何影響它們。 結果在熱評估和機械評估之間建立了一致,可以表明調查期間結構條件是一致的。 對數值方法進行了驗證,傳熱模型能夠很好地模擬鋼梁在火災下的溫度分佈。 在參數分析中,截面係數非常相似的試樣具有幾乎相同的表面溫度分佈。
The structural performance of protected steel beams under fire load is a significant area of research in structural engineering, particularly in structures where fire resistance is a primary design requirement. Insulating the steel beam intends to protect it from heating at a critical temperature, which could lead it to deteriorate and eventually fail. In this analysis, the thermal performance of the protected steel beam under the same fire load as the experiment data was examined and compared to the test findings. For the purpose of simulating high-temperature experimental studies, a nonlinear three-dimensional finite element model was created using the commercially available software ANSYS. The test results are validated by comparing the numerical solution to the experimental data. The total of four protected steel beams with simple support should be compared to one and the other in order to gain an understanding of all the possible scenarios. Following that, the samples were tested to determine how well they performed mechanically and how section factors affected them at high temperatures. The result established an agreement between the experimental and numerical evaluations that could indicate the thermal and structural conditions were consistent during the investigation period. The numerical method is verified, and the ANSYS model can well simulate the temperature distribution of steel beams under fire. In the parametric analysis, specimens with a remarkably similar section factor have a nearly identical surface temperature distribution. The temperature development of specimens is unaffected by the section height. However, an increase in section width results in a corresponding rise in temperature throughout the heating period.
Barrett, B. A. (2013). Steel Construction: Fire Protection. TATA Steel, British Consturctional Steelwork Association (BCSA), 40. www.steelconstruction.info
Both, C., Van Foeken, R. ., & Twilt, L. (1996). Analytical aspects of the Cardington test programme..pdf. Safety.
Bourbigot, S., Le Bras, M., Duquesne, S., & Rochery, M. (2004). Recent advances for intumescent polymers. Macromolecular Materials and Engineering, 289(6), 499–511. https://doi.org/10.1002/mame.200400007
Boyle, D. K. (2017). Planning and Design for Fire and Smoke Incidents in Underground Passenger Rail Systems. In Planning and Design for Fire and Smoke Incidents in Underground Passenger Rail Systems. https://doi.org/10.17226/24691
Buchanan, A., & Abu, A. (2017). Structural Design for Fire Safety. In Nucl. Phys. (Second Edi). A John Wiley & Sons, Ltd.,.
Bukowski, R. W., & Babrauskas, V. (1994). Developing rational, performance‐based fire safety requirements in model building codes. Fire and Materials, 18(3), 173–191. https://doi.org/10.1002/fam.810180305
Butler, K. M. (1997). Physical Modeling of Intumescent FIre Retardant Polymers. In Polimeric foams (pp. 214–226). NIST.
Camino, G., Costa, L., & Luda di Cortemiglia, M. P. (1991). Overview of fire retardant mechanisms. Polymer Degradation and Stability, 33(2), 131–154. https://doi.org/10.1016/0141-3910(91)90014-I
Camino, G., Costa, L., & Martinasso, G. (1989). Intumescent Fire-retardant Systems. Polymer, 23, 359–376.
Camino, G., Costa, L., & Trossarelli, L. (1984). Study of the mechanism of intumescence in fire retardant polymers: Part II-Mechanism of action in polypropylene-ammonium polyphosphate-pentaerythritol mixtures. Polymer Degradation and Stability, 7(1), 25–31. https://doi.org/10.1016/0141-3910(84)90027-2
Corus Construction & Industrial. (2006). Fire resistance of steel-framed buildings. 40.
Drysdale, D. (2011). An Introduction to Fire Dynamics (Third Edit). A John Wiley & Sons, Ltd.,.
Duquesne, S., Magnet, S., Jama, C., & Delobel, R. (2005). Thermoplastic resins for thin film intumescent coatings - Towards a better understanding of their effect on intumescence efficiency. Polymer Degradation and Stability, 88(1), 63–69. https://doi.org/10.1016/j.polymdegradstab.2004.01.026
EN 1991-1-2. (2002). EN 1991-1-2.
EN 1993-1-2. (2005). Design of steel structures - Part 1-2 (Vol. 1, Issue 2005).
Fan, S., Du, L., Zhang, L., Zheng, B., Shu, G., & Shi, K. (2015). Influence of the Section Factor on Fire-Resistance Behaviours of Stainless Steel Beams with Three Faces Exposed to Fire Selection of Specimens. 1–18.
Franssen, J.-M., & Real, P. V. (2012). TEMPERATURE IN STEEL SECTIONS. In Fire Design of Steel Structures. ECCS – European Convention for Constructional Steelwork.
Franssen, J. M. (2005). SAFIR: A thermal/structural program for modeling structures under fire. Engineering Journal, 42(3), 143–150.
Gillet, M., Autrique, L., & Perez, L. (2007). Mathematical model for intumescent coatings growth: Application to fire retardant systems evaluation. Journal of Physics D: Applied Physics, 40(3), 883–899. https://doi.org/10.1088/0022-3727/40/3/030
Gillie, M. (1999). Development of Generalized Stress Strain Relationships for the Concrete Slab in Shell Models.
Goode, M. G. (2004). Fire protection of structural steel in high-rise buildings. Nist, 88. http://fire.nist.gov/bfrlpubs/build04/art047.html
Horacek, H., & Pieh, S. (2000). Importance of intumescent systems for fire protection of plastic materials. Polymer International, 49(10), 1106–1114. https://doi.org/10.1002/1097-0126(200010)49:10<1106::AID-PI539>3.0.CO;2-I
Hurley, M. J. (2016). SFPE Handbook of Fire Protection Engineering (M. J. Hurley, D. Gottuk, & K. Harada (eds.); Fifth). Springer New York Heidelberg Dordrecht London. https://doi.org/10.1007/978-1-4939-2565-0
IFE. (2021). Fire engineering is the application of science based and engineering concepts, codes, and professional judgment to protect people, estate, and the environment from the catastrophic effects of fire. This understanding is based on a knowledge of the phenome. Institution of Fire Engineers - Canada Branch. http://www.ife.ca/fire-engineering.html
Kandola, B. K., Akonda, M. H., & Horrocks, A. R. (2005). Use of high-performance fibres and intumescents as char promoters in glass-reinforced polyester composites. Polymer Degradation and Stability, 88(1), 123–129. https://doi.org/10.1016/j.polymdegradstab.2004.01.030
Kolšek, J., & Češarek, P. (2015). Performance-based fire modelling of intumescent painted steel structures and comparison to EC3. Journal of Constructional Steel Research, 104, 91–103. https://doi.org/10.1016/j.jcsr.2014.10.008
Lataille, J. (2003). Fire Protection Engineering in Building Design. Butterworth-Heinemann.
Lawson, R. M. (2001). Fire engineering design of steel and composite buildings. Journal of Constructional Steel Research, 57(12), 1233–1247. https://doi.org/10.1016/S0143-974X(01)00051-7
Li, G. Q., Zhang, C., Lou, G. B., Wang, Y. C., & Wang, L. L. (2012). Assess the Fire Resistance of Intumescent Coatings by Equivalent Constant Thermal Resistance. Fire Technology, 48(2), 529–546. https://doi.org/10.1007/s10694-011-0243-8
Mariappan, T. (2016). Recent developments of intumescent fire protection coatings for structural steel: A review. Journal of Fire Sciences, 34(2), 120–163. https://doi.org/10.1177/0734904115626720
Meacham, B., Bowen, R., Traw, J., & Moore, A. (2005). Performance-based building regulation: Current situation and future needs. Building Research and Information, 33(2), 91–106. https://doi.org/10.1080/0961321042000322780
Meacham, B. J. (1998). The evolution of performance-based codes and fire safety design methods. Nist-Gcr-98-761, June.
Nørgaard, K. P., Dam-Johansen, K., Català, P., & Kiil, S. (2013). Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates. Progress in Organic Coatings, 76(12), 1851–1857. https://doi.org/10.1016/j.porgcoat.2013.05.028
O’Neill, J. W. (2013). The fire performance of timber floors in multi-storey buildings (Issue December). University of Canterbury.
Purkiss, J. A., & Li, L. Y. (2014). Fire safety engineering design of structures. In Fire Safety Engineering Design of Structures, Third Edition (Third Edit). CRC Press. https://doi.org/10.1201/b16059
Richardson, J. K., Association, N. F. P., & Engineers, S. of F. P. (2003). History of fire protection engineering. In TA - TT -. National Fire Protection Association ; Society of Fire Protection Engineers. https://doi.org/LK - https://worldcat.org/title/54832472
Seigel, L. G. (1970). Designing for fire safety with exposed structural steel. Fire Technology, 6(4), 269–278. https://doi.org/10.1007/BF02588928
Shuklin, S. G., Kodolov, V. I., & Klimenko, E. N. (2004). Intumescent coatings and the processes that take place in them. Fibre Chemistry, 36(3), 200–205. https://doi.org/10.1023/B:FICH.0000037984.86011.58
Tramm, H., Clar, C., Kuhnel, P., & Schuff, W. (1938). Fireproofing of wood (Patent No. 2106938). https://patents.google.com/patent/US2106938A/en
Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M., & Gillie, M. (2001). Fundamental principles of structural behaviour under thermal effects. Fire Safety Journal, 36(8), 721–744. https://doi.org/10.1016/S0379-7112(01)00037-6
Wald, F., Chladná, M., Moore, D., Santiago, A., & Lennon, T. (2006). THE TEMPERATURE DISTRIBUTION IN A FULL-SCALE STEEL FRAMED BUILING SUBJECT TO A NATURAL FIRE. Nd Composite Structures, 6(2), 159–182. https://doi.org/https://doi.org/10.12989/SCS.2006.6.2.159
Wang, J. Q., & Chow, W. K. (2005). A brief review on fire retardants for polymeric foams. Journal of Applied Polymer Science, 97(1), 366–376. https://doi.org/10.1002/app.21758
Wang, L., Dong, Y., Zhang, C., & Zhang, D. (2015). Experimental Study of Heat Transfer in Intumescent Coatings Exposed to Non-Standard Furnace Curves. Fire Technology, 51(3), 627–643. https://doi.org/10.1007/s10694-015-0460-7
Weil, E. D. (2011). Fire-protective and flame-retardant coatings - A state-of-the-art review. Journal of Fire Sciences, 29(3), 259–296. https://doi.org/10.1177/0734904110395469
Werther, N., O’Neill, J. W., Spellman, P. M., Abu, A. K., Moss, P. ., Buchanan, A. H. A. H., & Winter, S. (2012). Parametric study of modelling structural timber in fire with different software packages. 7th International Conference on Structures in Fire, June, 1–10. http://ir.canterbury.ac.nz/handle/10092/7385
Yuan, J. (2009). Intumescent Coating Performance on Steel Structures Under Realistic Fire Conditions. University of Manchester.
Zhang, Y., Wang, Y. C., Bailey, C. G., & Taylor, A. P. (2012). Global modelling of fire protection performance of intumescent coating under different cone calorimeter heating conditions. Fire Safety Journal, 50, 51–62. https://doi.org/10.1016/j.firesaf.2012.02.004
Zhang, Yong, Wang, Y. C., Bailey, C. G., & Taylor, A. P. (2013). Global modelling of fire protection performance of an intumescent coating under different furnace fire conditions. Journal of Fire Sciences, 31(1), 51–72. https://doi.org/10.1177/0734904112453566