簡易檢索 / 詳目顯示

研究生: 陳俊偉
Chen, Jiun-wei
論文名稱: 不同燒結時間對於MST添加之CaCu3Ti4O12的介電、導電及顯微結構的影響
Effects of sintering times on dielectric properties, conductivity and microstructures of MST-doped CaCu3Ti4O12
指導教授: 方滄澤
Fang, Tsang-tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 126
中文關鍵詞: 晶界鈣銅鈦氧晶域邊界介電鈣鈦礦立方晶結構
外文關鍵詞: CaCu3Ti4O12, Dielectric, Grain boundary, Domain boundary, Pervoskite structure
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CaCu3Ti4O12(簡稱CCTO)為鈣鈦礦立方晶結構之介電陶瓷材料。此材料在室溫下擁有極高的介電常數,約104~105。目前推斷CaCu3Ti4O12擁有高介電常數的原因為晶粒邊界及晶域邊界的效應,而燒結條件及起始粉末的性質對晶域及晶粒其邊界有極大的影響。
    本研究將純CaCu3Ti4O12以CaCO3、CuO、TiO2按照計量比混合後,以固態反應法合成,並添加含有Mn、Si、Ti的混合物(MST)在不同添加量下於不同燒結持溫時間來探討其對介電性質和顯微結構的影響,且利用添加後的效應進一步解釋燒結時間對於CaCu3Ti4O12機制產生的可能原因。

    CaCu3Ti4O12(CCTO) is a dielectric ceramic material which has pervoskite structure. This material has ultrahigh dielectric constant (about 104~105) at room temperature, and almost remain constant between 100K~600K. Recently, grain boundary and domain boundary are thought as the origin of such ultrahigh dielectric constant. Sintering conditions and raw materials have great influence on those boundaries.
    In this research, We get undoped CaCu3Ti4O12 powder with CaCO3、CuO、TiO2 stoichiometrily by solid state reaction at first. Then doping compounds consist Mn、Si、Ti elements (MST) and discuss it’s effects on dielectric properties and microstructure with different concentrations and sintering times, in addition, the probable mechanisms of those properties in CaCu3Ti4O12.

    摘要………………………………………………………………I Abstract............................................I 誌謝................................................II 目錄................................................III 表目錄..............................................V 圖目錄..............................................VI 第一章 緒論........................................1 1-1 前言........................................1 1-2 研究目的....................................2 第二章 理論基礎及文獻回顧..........................3 2-1 電容器的功用....................................3 2-2 基本介電性質....................................5 2-3極化的機構.......................................13 2-4 鬆弛時間........................................25 2-5 Maxwell-Wagner model............................29 2-6 障壁電容器......................................32 2-7 阻抗分析法......................................36 2-8 介電材料CaCu3Ti4O12概述.........................42 2-8-1 CaCu3Ti4O12介電性質概述.....................42 2-8-2 CaCu3Ti4O12結構.............................43 2-8-3 近來發表的新理論............................44 第三章 實驗步驟及方法..............................52 3-1 實驗藥品........................................52 3-2 實驗流程........................................52 3-2-1 粉末製備....................................52 3-2-2 試片製備....................................53 3-3 材料性質分析....................................53 3-3-1 密度量測....................................53 3-3-2 X-ray繞射分析...............................54 3-3-3電阻率、介電性質、交流阻抗分析量測...........54 3-3-4掃描式電子顯微鏡(SEM)顯微觀察................55 3-3-5 TEM顯微結構觀察.............................55 第四章 結果與討論..................................59 4-1 密度量測........................................59 4-2 X-ray繞射分析...................................61 4-3 顯微結構分析....................................63 4-3-1 SEM顯微結構觀察.............................63 4-3-2 TEM顯微結構觀察.............................77 4-4 電性分析........................................92 4-4-1 電阻率......................................92 4-4-2 介電性質分析................................93 4-4-3 交流阻抗分析................................103 第五章 結論........................................123 參考文獻............................................124

    [1] 林宗輝,電容的技術與應用http://tech.digitimes.com.tw/
    [2] 汪建民,ceramic technology (1994)
    [3] A.R. Von hippel, Dielectrics and Waves, ChapI-2
    [4] H. Ehrenreich, F. Spaepen, Solid State Physics, volume56, ChapII
    [5] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics”, 2nd
    Edition, John Wiley & Sons, New York (1976)
    [6] M. W. Barsoum, “Fundamentals of Ceramics”, McGraw-Hill, Singapore,
    p526-543 (1997)
    [7] C. G. Koops, “On the dispersion of resistivity and dielectric constant of some
    semiconductors at audiofrequenies”, Phys. Rev., 83, 1, 121-124 (1951)
    [8] Vera, V. Daniel, “Dielectric Relaxation”, Electrical Research Association, Leatherhead, Surrey, England, p1-18(1967)
    [9] A.R. Von hippel, Dielectrics and Waves, Chap31
    [10] G. C. Jain, “Properties of Electrical Engineering Materials,“ (1966)
    [11] Herbert, J. M ,Ceramic dielectrics and capacitors, New York ,1985, p202-218
    [12] T. T. Fang, H. K. Shiau, “Mechanism for developing the boundary barrier layers
    of CaCu3Ti4O12”, J. Am. Ceram. Soc., 87, 11, 2072-2079 (2004)
    [13] A. J. Moulson, J. M. Herbert, Electroceramics, 2nd edition, Wiley, P326-P329
    [14] 邱碧秀, “電子陶瓷材料”, 徐氏基金會, 臺北巿, p129-153 (1988)
    [15] 林緯傑, “不同相的TiO2及CaSiO3添加對CaCu3Ti4O12介電、導電和顯微結
    構的影響”, 國立成功大學材料及工程研究所碩士論文, 2007
    [16] 鍾金宏, “錳離子摻雜和電極效應對CaCu3Ti4O12的介電性質及顯微結構的影
    響”, 國立成功大學材料及工程研究所碩士論文, 2007
    [17] T. T. Fang, L. T. Mei, “Evidence of Cu Deficiency:A Key Point for the
    Understanding of the Mystery of the Gient Dielectric Constant in CaCu3Ti4O12”,
    J. Am. Ceram. Soc., 90, 2, 638-640 (2007)
    [18] 蕭旭凱, “鈣鈦礦結構CaCu3Ti4O12之介電及電性的研究”, 國立成功大學材
    料及工程研究所碩士論文, 2003
    [19] T. T. Fang, and C. P. Liu, ‘‘Evidence of the Internal Domain for Inducing the
    Anomalously High Dielectric Constant of CaCu3Ti4O12’’, Chem. Mater. 2005,
    17, 167-5171 (2005)
    [20] T. T. Fang, L. T. Mei, H. F. Ho, “Effects of Cu stoichiometry on the
    microstructures, barrier-layer structures, electrical conduction, dielectric
    responses, and stability of CaCu3Ti4O12”, Acta Materialia, 54, 10, 2867-2875
    (2006)
    [21] J. Cai, Y. H. Lin, B. Cheng, C. W. Nan, “Dielectric and nonlinear electrical behaviors observed in Mn-doped CaCu3Ti4O12 ceramic”, Appl Phys Letters, 91, 252905 (2007)
    [22] D. C. Sinclair, A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance”, J. Appl. Phys., 66, 8, 3850-3856 (1989)
    [23] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, “High
    dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases”, J. Solid State
    Chem., 151, 2, 323-325 (2000)
    [24] S. M. Moussa, B. J. Kennedy, “Structural studies of the distorted perovskite
    Ca0.25Cu0.75TiO3”, Materials Research Bulletin, 36, 13-14, 2525-2529 (2001).
    [25] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, “CaCu3Ti4O12:One-step
    internal barrier layer capacitor”, Appl. Phys. Lett., 80, 12, 2153-2155 (2002)
    [26] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.
    M.Shapiro, “Giant dielectric constant response in a copper-titanate”, Solid State
    Communications, 115, 217-220 (2000)
    [27] C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, “Optical
    Response of High-Dielectric-Constant perovskite-Relative Oxide”, Science 293,
    673-676 (2001).
    [28] P. Lunkenheimer , V. Bobnar, A. V. Pronin, A. I.Ritus, A. A. Volkov, A. Loidl,
    “Origin of apparent colossal dielectric constants”, Phys. Rev. B, 66,
    052105-(1-4) (2002)
    [29] M. H. Cohen, J. B. Neaton, L. He, D. Vanderbilt, “Extrinsic models for the
    dielectric response of CaCu3Ti4O12”, J. Appl. Phys., 94, 5, 3299-3306 (2003)
    [30] A. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. France, 11, 4077
    (1967)
    [31] T. B. Adams, D.C. Sinclair, A. R. West, “Giant barrier layer capacitance effects in
    CaCu3Ti4O12”, Adv. Mater., 14, 18, 1321-1323 (2002)
    [32] A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, and applications, Chapman & Hall, London, UK (1990)
    [33] L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, “Defect structure of the high-dielectric-constant perovskite CaCu3Ti4O12”, Phys. Rev. B 71, 014118-(1-7) (2005)
    [34] T. B. Adams, D.C. Sinclair, A. R. West, “Characterisation of grain boundary impedances in fine- and coarsed-garined CaCu3Ti4O12 ceramics”, Phys. Rev. B 73, 0941241-9 (2006)
    [35] T. B. Adams, D.C. Sinclair, A. R. West, “The influence of processing conditions om the electrical properties of CaCu3Ti4O12 ceramics”, J. Am. Ceram. Soc., in press
    [36] J. Li, M. A. Subramanian, H. D. Rosenfeld, C. Y. Jones, B. H. Toby, and A. W. Sleight, “Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of SrCu3Ti4O12 “, Chem. Mater., 16, 5223-5 (2004)
    [37] B. Bochu, M.N. Deschizeaux, J.C. Joibert, “Synthése et caractérisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12”, J. Solid State Chem., 29, 291 (1979)
    [38] Awatef Hassini, Monique Gervais, Jérôme Coulon, Vinh Ta Phuoc, Francois Gervais, “Synthesis of Ca0.25Cu0.75TiO3 and infrared characterization of role played by copper”, Materials Science and Engineering B, 87, 2, 164-168 (2001).
    [39] L. He, J.B. Neaton, M. H. Cohen, D. Vanderbilt, C. C. Homes “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12”, Phys. Rev. B, 65, 214112-(1-11) (2002)
    [40] N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, M. N. Iliev, “Raman spectroscopy of CaCu3Ti4O12”, Phys. Rev. B, 66, 132102 (2002)
    [41] M. A. Subramanian, A. W. Sleight, “ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy”, Solid State Sciences 4, 3, 347-351 (2002)
    [42] Ming. Li, A. Feteira, D. C. Sinclair, A. R. West, “Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics”, Appl. Phys. Lett, 88, 232903 (2006)

    下載圖示 校內:2010-07-17公開
    校外:2010-07-17公開
    QR CODE