簡易檢索 / 詳目顯示

研究生: 洪怡芬
Hong, Yi-Fen
論文名稱: 臺灣東部花蓮砂卡礑溪硬綠泥石岩之熱液礦物生成及蝕變作用
Hydrothermal mineralization and alteration of chloritoid rocks from Shakadang River, Hualien, eastern Taiwan
指導教授: 江威德
Jiang, Wei-Teh
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 硬綠泥石岩剛玉鈉鉀雲母稀土元素鈾複稀金礦熱液蝕變作用
外文關鍵詞: chloritoid rock, corundum, Na-K mica, Rare earth elements, uranopolycrase, hydrothermal alteration
相關次數: 點閱:146下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前人研究認為砂卡礑地區以硬綠泥石組成之硬綠泥石岩,因具有高Al2O3、FeO,低SiO2的化學成分,認為基性岩受風化作用後之紅壤為其可能的原岩,並視其為太魯閣帶片岩與大理岩之間的一個不整合指示層。然而根據野外與手標本觀察,硬綠泥石岩尚有不少脈狀礦物與伴生之換質現象,顯示該岩石之成分可受熱水換質作用改造。為瞭解硬綠泥石岩在熱液蝕變過程中所產生的礦物群變化與熱液蝕變序列之關係,及該岩石之全岩成分於熱水蝕變作用之下的轉變趨勢,因此本研究以偏光顯微鏡、X光粉末繞射、掃瞄式電子顯微鏡等方法分析產自太魯閣地區砂卡噹溪所產之硬綠泥石岩。
    砂卡噹溪所產的硬綠泥石岩以透鏡體或豆莢狀外形,夾於綠色片岩及大理岩中,其產狀依照外觀與礦物組合可分為:(1)塊狀未蝕變硬綠泥石岩、(2)蝕變硬綠泥石岩及(3)與熱水作用相關的硬綠泥石脈。實驗結果顯示相對未受熱水蝕變作用的硬綠泥石岩主要以硬綠泥石、剛玉、珍珠雲母、鈦鐵礦、鈦赤鐵礦、金紅石等礦物組成,而受蝕變作用之硬綠泥石岩則含有硬綠泥石、鈦赤鐵礦、與較大量的金紅石、及次要之氟磷灰石、褐簾石-(鈰)、獨居石-(鈰)、鈾複稀金礦(uranopolycrase)等礦物。主要礦物硬綠泥石於換質作用中,三價鐵含量由未換質之0.04-0.08 a.p.f.u. 隨著換質作用之發生逐漸升高至0.09-0.13 a.p.f.u.,並於脈狀硬綠泥石中達到最高的0.15-0.23 a.p.f.u.,此一現象與偏析作用之鈦赤鐵礦、離析物金紅石隨換質作用程度增加、與含鈾與REE礦物之出現,顯示換質作用之流體可能於較氧化的狀態下與圍岩反應。
    顯微岩象顯示硬綠泥石岩應含有五個不同時期之變質作用與熱液礦化作用紀錄:(1)較高溫之剛玉、珍珠雲母、鈉鉀雲母、鈦鐵礦、硬綠泥石,近似於角閃岩相之礦物組合;(2)硬綠泥石脈侵入與岩體中之硬綠泥石再結晶作用、與鈦鐵氧化物之氧化作用、金紅石之增生、含鈾礦物、氟磷灰石、稀土與含鈾礦物之出現;(3)硬綠泥石粗脈之發育;(4)綠泥石脈侵入 ;及(5)石英脈侵入。由礦物組合與換質序列之現象可見岩體中之熱水作用隨著時序有著降溫的趨勢,而早期之高溫熱水事件可使Al、U、Nb、P、Ce、La、Y等元素遷移並有富集之現象。

    Chlortoid rock from Shakatang creek forms lenticular body interclay within marble and greenschist sucessions within Tailuko belt in Tananao metamorphic metamorphic complex. Base on its peculiar bulk rock chemistry of high alumina, iron, with anormolus low SiO2 contents, former researchers proposed a lateritic protolith and thus a fossil weathering horizon in Tailuko belt. However, upon field and hand specimen observation, pervasive hydrothermal alterations occurred as veins or bleached coloration, indicates such rock may also undergone hydrothermal modification on mineral assemblage and bulk rock compositions. In this study we used optical and scanning electron microscopy (SEM), equipped with energy dispersive spectrometry (EDS) to understand the likehood effect of hydrothermalism on chloritoid rock.
    Chloritoid rock from Shakatang creek base on alteration degree and stages were classified into 3 categories: (1) unaltered chloritoid rock, (2) altered chloritoid rock, and (3) late stage chloritoid veins. Class one unaltered chloritoid rock is composed of chloritoid + corundum + margarite + ilmenite + titanohematite + rutile assemblage, where-else class two altered chloritoid rock with similar composition but higher proportion of titanohematite and rutile in exsolution texture, with neogrowth of REE bearing minerals such as allanite-(Ce), monazite-(Ce), and uranopolycrase. At lease 5 stages of metamorphic or hydrothermal assemblages are identified: (1) high temperature amphibolite facies corundum + margarite + Na-K white mica assemblages; (2) chloritoid veinlets with altered matrix composed of exolved titanohematite+rutile, and accessory REE and uranium bearing minerals; (3) large chloritoid veins; (4) incursion of chlorite veins; and the latest (5) quartz veins. Progressive dissolution of corundum and disappearance of margarite with replacement of later chloritoids along with cooling trend was oberved. The established paragenesis and the inferred hydrothermal alteration effect to the chloritoid rock indicates that the earlier stage hydrothermal alteration was capable to mobile Al, U, Nb,P, Ce, La, Y elements, which was suggested relative immobile in other studies.

    摘要 ............................................................................................................................... I Abstract ......................................................................................................................... II 誌謝 ............................................................................................................................. III 目錄 ............................................................................................................................. IV 表目錄 ........................................................................................................................ VII 圖目錄 ....................................................................................................................... VIII 造岩礦物名稱縮寫 ....................................................................................................... X 第一章 前言 ............................................................................................................... 1 第二章 地質背景 ......................................................................................................... 3 2-1 大南澳變質雜岩之大地構造 ........................................................................ 3 2-2 太魯閣峽谷之岩性與地層 ............................................................................ 5 2-3 砂卡礑溪-荖西溪硬綠泥石岩之前人研究 ................................................ 7 第三章 研究方法 ......................................................................................................... 9 3-1 採樣地點 ........................................................................................................ 9 3-2 實驗流程 ....................................................................................................... 11 3-2-1 X光粉末繞射分析 ........................................................................... 11 3-2-2 偏光顯微鏡分析 .............................................................................. 12 3-2-3 掃瞄式電子顯微鏡分析 .................................................................. 12 第四章 結果 ............................................................................................................... 16 4-1岩樣觀察 ....................................................................................................... 16 4-2 X光粉末繞射分析 ...................................................................................... 25 4-2-1未蝕變硬綠泥石岩 ........................................................................... 25 4-2-2 蝕變硬綠泥石岩 .............................................................................. 27 4-2-3 硬綠泥石脈 ...................................................................................... 29 4-3硬綠泥石岩之岩象分析 ............................................................................... 31 4-3-1未蝕變硬綠泥石岩 ........................................................................... 31 4-3-2蝕變硬綠泥石岩 ............................................................................... 38 4-3-3硬綠泥石脈 ....................................................................................... 42 4-4硬綠泥石岩之礦物化學分析 ....................................................................... 51 4-4-1硬綠泥石(chloritoid) ......................................................................... 51 4-4-2鈦赤鐵礦(titanohematite) .................................................................. 54 4-4-3白色雲母 ........................................................................................... 56 4-4-4綠泥石 ............................................................................................... 60 4-4-5褐簾石 ............................................................................................... 63 第五章 討論 ............................................................................................................... 67 5-1 硬綠泥石岩受熱液蝕變之礦物生成次序與特徵 ...................................... 67 5-2熱液礦化與蝕變產物反映出熱液性質 ....................................................... 74 5-2-1第一期熱液-剛玉脈 ....................................................................... 74 5-2-2第二期-硬綠泥石細脈 ................................................................... 75 5-2-3第三期-綠泥石脈 ........................................................................... 75 5-2-4第四期熱液-硬綠泥石粗脈 ........................................................... 75 5-2-5第五期熱液-石英 ........................................................................... 76 第六章 結論 ............................................................................................................... 77 第七章 參考文獻 ....................................................................................................... 78 附錄 ............................................................................................................................. 82 表一、未蝕變硬綠泥石岩XRD分析結果 ...................................................... 82 表二、蝕變硬綠泥石岩XRD分析結果 .......................................................... 86 表三、硬綠泥石脈XRD分析結果 .................................................................. 90 表四、硬綠泥石化學成分分析結果 ................................................................. 94 表五、剛玉化學分析結果 ................................................................................. 97 表六、綠泥石化學分析結果 ............................................................................. 98 表七、珍珠雲母化學分析結果 ......................................................................... 99 表八、金紅石化學分析結果 ........................................................................... 100 表九、磁鐵礦化學分析結果 ........................................................................... 102 表十、鈉雲母-白雲母化學分析結果 .............................................................. 103 VI 表十一、鈦鐵礦化學分析結果 ....................................................................... 104 表十二、綠簾石-褐簾石化學分析結果 .......................................................... 105 表十三、獨居石化學分析結果 ....................................................................... 107 表十四、硬綠泥石不同產狀的同質異構 ....................................................... 108

    王執明 (1982)新釋「大南澳片岩」。中國地質學會會刊,第二十五號,5-12。
    王執明 (1991)太魯閣峽谷之變質岩。花蓮:內政部營建署太魯閣國家公園管理處。共256頁。
    王景林 (2002)臺灣中部橫貫公路低度變質泥岩中之礦物轉變。國立成功大學地球科學研究所碩士論文。共107頁。
    李元希 (1995) 由中橫剖面及其鄰近地區看台灣造山帶的應力場型態的演化。經濟部中央地質調查所彙刊,第十號,51-89。
    陳正恆 (1989) 臺灣大南澳片岩區溝鞭藻化石初步研究。國立台灣大學地質科學研究所碩士論文。共89頁。
    傅文勳 (1995)由褶皺型式推論控制長春橋地區大南澳片岩岩體分布的構造因素。 國立台灣大學地質科學研究所碩士論文。共60頁。
    何春蓀(1986) 臺灣地質概論 台灣地質圖說明書。經濟部中央地質調查所。共164頁。
    俞震甫、羅清華 (2002) 台灣先第三紀大地構造。中國地質學會八十八年年會論文,第145-177頁。
    顏倉波 (1954) 臺灣之片麻岩。台灣省地質調查所彙刊,第五號,第1-100頁。
    顏倉波 (1960) 臺灣北部大南澳片岩之地層學的研究。台灣省地質調查所彙刊,第十二號,第53-66頁。
    顏倉波 (1963) 臺灣大南澳片岩區中之變質帶。中國地質學會會刊,第十六號,第72-74頁。
    Beadr, J. S., Sorensen, S. S. and Giere, R. (2006) REE zoning in allanite related to changing partition coeffivients during crystallization: implications for REE behaviour in an epidoite-bearing tonalite. Mineralogical Magazine, 70, 419-435.
    Braun, E. and Raith, M. (1985) Fe-Ti-Oxides in metamorphic basites from the Eastern Alps, Austria: a contribution to the formation of solid solutions of natural Fe-Ti-Oxide assemblages. Contributions to Mineralogy and Petrology, 90, 199-213.
    Bucher, K., De Capitani, C. and Grapes, R. (2005) The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramific rock, Kvesjoen, Norwegian Caledonides. Canadian Mineralogist, 43, 129-156.
    Buddington, A . F. and Lindsley, D . H. (1964) Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5, 310-357.
    Chen, P. Y. (1963) Mineralogy and petrology of the chloritoid rock from Shakatangchi and Laohsichi areas, Hualien, Taiwan. Acta Geol. Taiwanica, 10, 11-27.
    Choudhuri , A. (1970) Chloritoid from Low-Grade Schists. Singhbhum, Easter India. Contr. Mineral. and Petrol., 29,116-112.
    El-Shazly, A. K. and Liou, J. G. (1991) Glaucophane Chloritoid-bearing assemblages from NE Oman: petrologic significance and a petrogenetic grid for high P metapelites. Contributions to Mineralogy and Petrology, 107, 180-201.
    Franceschelli, M., Puxeddu, M., and Gattigio, M. (2003) Geochemistry and origin of chloritoid schist from the Alpi Apuane, Italy: evidence of a prevailing lateritic signature. Eur. J. Mineral, 15, 575-588.
    Gieré, R. (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terrra Nova, 2, 60-67.
    Halferdahl, L. B. (1961) Chloritoid: its composition, x-ray and optical properties, stability, and occurrence. Jour. Petrol., 2, 49-135
    Hoschek, G. (1967) Untersuchungen zum Stabilitatsbereich von Chloritoid und Staurolith. Contr. Mineral. & Petrol., 14, 123-162.
    Hwang, S. L., Yui, T. F., Chu, H. T. and Shen, P. (2002) Discovery of Kyanite/Staurolite in the Tananao Metamorphic Complex, Taiwan : A Supplement. Western Pacific Earth Sciences, 2, 161-170.
    80
    Ichimura, T. (1936) Brief note on the rock and minerals of Taiwan (in Japanese). Taiwan Tigaku Kizi, 7, 105-106.
    Jan, M. Q. and Rafiq, M. (2007) Petrology of chloritoid–ilmenite-rich rocks in the Indus Suture mélange of Pakistan: Implications for the Cretaceous paleolatitude of Kohistan. Journal of Asian Earth Sciences, 29 ,361–368.
    Lindsley, D. H. (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxide. Reviews in Mineralogy 3, Oxide Minerals. Mineralogical Society of America, Washington, DC. L1-60.
    Liou, J. G. and Chen, P. Y. (1978) Chemistry and origin of chloritoid-rich rocks from eastern Taiwan. Lithos, 11, 175–187.
    Ranson, W. A. (2000) Margarite-crundum phyllites from the Appalachian orogen of South Carolina: Mineralogy and metamorphic history. American Mineralogist, 85, 1617-1624.
    Riesco, M., Stiiwe, K. and Reche, J. (2005) Formation of corundum in metaplites around ultramafic bodies. An example from the Saualpe region, Eastern Alps. Mineralogy and Petrology, 83, 1-25.
    Roever, E. W. F. (1977) Chloritoid-Bearing Metapelites Associated with Glaucophane Rocks in W Crete. Contributions to Mineralogy and Petrology, 60, 317-319.
    Roux, J. and Hovis, G. L. (1996) Thermodynamic Mixing Models for Muscovite - Paragonite Solutions Based onSolution Calorimetric and PhaseEquilibrium Data. Journal of Petrology, 37, 1241-1254.
    Seidel, E., and Okrusch, M. (1977) Chloritoid-Bearing Metapelites Associated with Glaucophane Rocks in W Crete, Greece. Contributions to Mineralogy and Petrology, 60, 321-324.
    Shirane, G., Pickart, S. J., Nathans, R. and Ishikawa, Y. (1959) Neutron-diffraction syudy of antiferromagenetic FeTiO3 and its solid solutions with α-Fe2O3. J. Phys. Chem. Solids, 10, 35-43.
    Shirane, G., Cox, D. E. and Ruby, S. L. (1962) MÖssbauer study of isomer shift, quadruple interaction, and hyperfine field in several oxides containing Fe57. Phys. Rev, 125, 1158-1165.
    Takla, M. A., Trommsdorff, V., Basta, F. F. and Surour, A. A. (2003) Margartite in ultramafic alteration zones (Blackwall): A new occurrence in Barramiya Area, Egypt. Eur. J. Mineral, 15, 991-999.
    81
    Timothy, E. L. T., Kerrich, R., Hodder, R. W. and Barnett, R. L. (1980) Chloritoid Stability in Very Iron-Rich Altered Pillow. Contrib. Mineral. Petrol., 74, 165-173.
    Wang Lee, C. and Wang , Y. (1987) Tananao terrane of Taiwan – Itsrelation to the late Mesozoic collision and accretion of the southeast China margin. Acta Geol. Taiwanica, 25, 225-239.
    Wang Lee, C., Chen, J. C., Wang, Y., Yui, T. F., Lu, C. Y. and Lo, C. H. (1985) Relic of ancient oceanic crust in the Changchun Formation of eastern Taiwan. Proc. Geol. Soc. China, 28, 10-22.
    Whitney, D. L. and Evans, B. W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
    Yen, T. P., Sheng, C. C. and Keng, W. P. (1951) The discovery of fusuline limestone in the metamorphic complex of Taiwan. Bull. Geol. Survey Taiwan, 3, 23-25.
    Yen, T. P. (1953) On the occurrence of the late Plaeozoic fossils in the metamorphic complex of Taiwan. Bull. Geol. Survey Taiwan, 5, 1-99.
    Yen, T. P. (1959) The minerals of the Tananao schist of Taiwan. Ibid., 11, 1-54.
    Yui, T. F. , Wu, T. W., Wang, Y., Lo, C. H. and Lu, C. Y. (1994) Evidence for submarine weathering from metamorphosed weathering profiles on basaltic rocks, Tananao Metamorphic Complex, Taiwan. Chemical Geology, 118, 185-202.
    Yui, T. F., Lu, C. Y. and Lo, C.H. (1998) A speculative tectonic history of the Tananao Schist of Taiwan. Proc. Geol. Soc. China, 31, 7-18.

    下載圖示 校內:2017-07-31公開
    校外:2017-07-31公開
    QR CODE