| 研究生: |
呂維倫 Lu, Wei-Lun |
|---|---|
| 論文名稱: |
薄膜太陽能電池製作之關鍵因子研究 The Study of Critical Factors for Thin Film Solar Cells |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 薄膜太陽能電池 、透明導電層 、氧化鋅 、多孔性陽極氧化鋁 |
| 外文關鍵詞: | Thin film solar cells, transparent conducting oxide, Zinc oxide, Porous anodic alumina |
| 相關次數: | 點閱:145 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前全世界太陽能電池市場中,結晶矽太陽能佔約百分之九十,受限於目前上游矽晶原料的取得成本仍約在每公斤70-80美元,但終端電池價格已降至美金1元以下,以致近期多晶矽太陽能電池廠多處獲利不佳的狀況。薄膜太陽能電池由於係一貫式生產,終端產品極為太陽能模組系統,而非電池加上模組化兩段式生產,加上生產原料成本低(例如:半導體或面板廠常用的矽甲烷SiH4及玻璃基材),具有較佳的成本競爭優勢,因此在近期也逐漸備受重視。目前薄膜太陽能電池技術中,除了銻化隔(CdTe)薄膜與銅銦鎵硒(CuInGaSe2),矽薄膜電池具有原料取得容易,生產流程環保等優勢,是目前業界主要量產的方向之一,而其效率的提升,卻是另一個急待解決的重要課題。
為了提升矽薄膜太陽能電池效率,針對可以提升微晶矽(c-Si:H)層在長波長範圍弱吸光的特性是相當重要。目前工業界大多以摻氟的氧化錫(SnO2:F)玻璃作為矽薄膜電池的玻璃基材,由於其粗糙化光學結構在玻璃生產時即製作完成,無法進行後製加工改善其光學結構;由於近期利用濺鍍技術製作摻鋁氧化鋅導電薄膜(ZnO:Al)具有製作成本低、環境汙染低、可調變表面粗糙結構(texture surface)等優勢,目前受到薄膜太陽能電池廠的青睞。
本論文中,我們針對如何提昇透明導電層的光學特性以及其應用在矽薄膜太陽能電池效率提昇有助益的方向進行研究。首先,我們驗證了在摻鋁氧化鋅導電薄膜上利用化學液相沉積法成長氧化鋅奈米柱(ZnO nanorods)結構以提高其薄膜在波長400 nm至850 nm間的光穿透率及光散射性(light scattering)。藉由控制奈米柱在導電薄膜上的沉積密度及調變奈米柱直徑大小可明顯改變薄膜之光穿透率。該研究中,我們亦利用等效介質理論(effective medium approximation)計算不同直徑下的奈米柱結構層之反射率,以作為未來應用於不同光電元件的設計參考。
接著,我們利用化學濕式蝕刻法對摻鋁氧化鋅薄膜表面製作粗糙化結構並研究其表面形貌與光學特性。其中,我們使用了三種不同稀酸溶液,分別為鹽酸(HCl)、硝酸(HNO3)與磷酸(H3PO4)。經過酸液蝕刻後的摻鋁氧化鋅薄膜之平均穿透率皆為75-80%,而利用稀硝酸蝕刻後的薄膜霧度(Haze ratio)在波長550 nm時更可以達到43.0%。除此之外,利用稀硝酸所得到的表面粗糙化摻鋁氧化鋅薄膜其電特性分別為:電阻率為5.47×10-4 Ω-cm,載子濃度為 3.98×1020 cm-3 以及載子移動率為28.7 cm2/Vs。 相較於無表面粗糙化結構的摻鋁氧化鋅薄膜,將矽薄膜太陽能電池元件成長於粗糙化摻鋁氧化鋅薄膜上,其電流密度可有效提昇17.8%,於此更驗證了表面粗糙化結構有助於改善電池元件之光電特性。
同時,我們也利用PECVD成長摻氟之氧化矽(SiOF)薄膜並研究其薄膜與光電特性。其中,我們發現SiOF之薄膜成長特性會受到其成長溫度影響,隨著基板溫度升高,SiOF薄膜之折射率也會隨之增加,而在基板溫度350°C 時得到最高之折射率1.45。除此我們也利用原子力顯微鏡探討SiOF薄膜之表面形貌,發現隨著基板溫度由150°C升高350°C,其薄膜表面粗糙度由22.83 nm增加至41.79 nm。除此之外,利用低溫PECVD製程所製作出的SiOF薄膜,其折射率可調變,因此亦可以應用於矽薄膜或銅銦鎵硒薄膜太陽能電池之抗反射層結構。
最後,我們將摻鋁氧化鋅(ZnO:Al)薄膜成長於多孔性陽極氧化鋁(Porous anodic alumina; PAA)結構上並探討其光學特性。為了研究不同孔徑大小的多孔性結構,陽極氧化鋁結構製備於80V, 100V與120V三種不同的電壓。其中可發現,單層陽極氧化鋁結構之平均穿透率可達90%以上。有鑒於其高穿透率與孔洞化結構,提供了我們可以直接在多孔性結構上製作粗糙化透明導電層的模版(template)。從研究中我們更發現藉由改變陽極氧化鋁孔徑大小,可改變該多孔性結構層之折射率,進而有助於改變入射光之波長,於此可將該技術應用於目前矽薄膜太陽能電池中,除了可以製作不同孔洞大小調變其光學結構,更可以在該模板表面上製作粗糙化的透明導電層,並藉由該粗糙化表面提昇薄膜電池之光電流大小。
The world photovoltaic (PV) cell market is dominated by crystalline silicon solar cells, which account for nearly 90% of world PV cell and module production. Researchers and industry experts believe that thin film solar cells are candidates for significant production volume in the future because of their potential to reach the very low cost target of less than one US dollar per watt. Since silicon is an abundant material, low cost silicon thin-film solar cells have a good chance of gaining a significant market share. However, at present, the efficiency of silicon thin film solar cells is low. Thus, a significant increase in efficiency remains a crucial task in the development of silicon thin film solar cells.
To increase the efficiency of silicon thin film solar cells, optical enhancement of the intrinsically low absorbance for microcrystalline Si in the long wavelength range is critical. To date, large-area module manufacturing has no answer for the less favorable light trapping properties of traditional fluorine doped SnO2 glass substrate (SnO2:F). Therefore, sputtered Al-doped ZnO (ZnO:Al, AZO) films have attracted much attention as an alternative to SnO2:F in silicon-based thin film solar cell applications due to its low cost, low environmental toxicity, and excellent light trapping properties for long wavelengths.
In this thesis, we demonstrate several technologies applied to transparent conducting Al-doped ZnO thin films to efficiently enhance the optical transmittance and light scattering performance. First, the optical transmittance of AZO films can be improved by the use of ZnO nanorods grown by the aqueous chemical growth method (ACG). The transmittance of Al-doped ZnO films with post-grown ZnO nanorods is clearly improved at wavelengths between 400 nm to 850 nm by modulating the air volume ratio of the rod densities and by the variation in the diameter of the rods. Further, the resultant refractive index of ZnO nanorods with varied diameters is evaluated and designed using the effective medium approximation.
Second, the optical properties and morphologies of Al-doped ZnO films textured by the chemical wet-etching method are investigated. The film surface was textured by wet-etching using diluted HCl, HNO3 or H3PO4. The average transmittance of all the post-treated ZnO:Al films remains around 75-80%. Further, the HNO3 etchant gives the highest haze ratio of 49.3% at a wavelength of 550 nm. The textured ZnO:Al films with an electrical resistivity of 5.47×10-4 Ω-cm, carrier concentrations of 3.98×1020 cm-3, and mobility of 28.7 cm2/Vs, can be obtained when etched in diluted HNO3. Compared with solar cells deposited on non-textured ZnO:Al films, a significant enhancement in the short-circuit current density of 17.8% for the a-Si solar cells with textured ZnO:Al films was achieved.
Next, an investigation of a fluorine-doped silicon oxide (SiOF) films prepared using a mixture of SiH4, N2O and CF4 in a conventional PECVD system was performed. Deposition behaviors are determined by the deposition temperature. The refractive index of the SiOF film increases continuously with increasing substrate deposition temperature. At 350°C, the refractive index reaches a maximum value of 1.45. Surface topography is imaged by atomic force microscopy, showing that the surface roughness (root-mean-square) increases from 22.83 nm to 41.79 nm as the deposition temperature increases from 150°C to 350°C. The low-temperature deposition PECVD method produces SiOF films well-suited for use as anti-reflective layers on silicon solar cells or substrate-type thin film Cu(In,Ga)Se2 solar cells.
Finally, the optical and electrical properties of Al-doped ZnO thin films on porous anodic alumina (PAA) template were also investigated. PAA template was fabricated at 80V, 100V and 120V to obtain different pore sizes. It was found that the transmission of the single PAA film is up to 90% higher than the as-grown AZO film in the infrared wavelengths. Due to its high transmittance and periodic arrangement, the PAA film is suitable for use as a template for deposition of the textured Al-doped ZnO. Consequently, specific incident light can be effectively managed on silicon thin film solar cells using the porous anodic alumina method.
[1] Claes G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Solar Energy Materials & Solar Cells, Vol. 91, 17, 1529 (2007)
[2] R. E Smalley, “Future global energy prosperity: the terawatt challenge,” MRS Bull. Vol. 30, 412 (2005)
[3] J. A. Palz, D. Campbell-Lendrum, T. Holloway, J. A. Foley, “Impact of regional climate change on human health,” Nature, Vol. 438, 310 (2005)
[4] J.F.B. Mitchell, J. Lowe, R.A. Wood, M. Vellinga, “Extreme events due to human-induced climate change,” Philos. Trans. R. Soc. A 364, 2117 (2006).
[5] M. Kolokotroni, Y. Zhang, R. Watkins, “The London heat island and building cooling design,” Sol. Energy, Vol. 81, 102 (2007).
[6] N. Stern, The Economics of Climate Change: The Stern Report, Cambridge University Press, Cambridge, UK, 2007.
[7] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. Vol. 31, 292 (1997)
[8] M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B. 32, 23 (1985).
[9] M. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells,”Prog. Photovolt.: Res. Appl. 7 (1999)
[10] F. H. Karg, “elopment and manufacturing of IS thin film solar modules,” Solar Energy Mater. Solar Cells, Vol 66, 645 (2001).
[11] B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells”Appl. Phys. A: Mater. Sci. Process. A69, 155 (1999).
[12] J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells” Sol. Energy, Vol. 77, 917 (2004).
[13] Wei-Chi Lee, Kai-Ming Uang, Tron-Min Chen, Der-Ming Kuo, Pei-Ren Wang, Po-Hong Wang, and Shui-Jinn Wang, “Enhanced Light Output of Vertical-Structured GaN-Based Light-Emitting Diode with Surface Roughening Using KrF Laser and ZnO Nanorods“, Jpn. J. Appl. Phys. Vol. 49, 04DG12 (2010).
[14] H. K. Kim, M. Mathur, “Thermally stable ZnO films deposited on GaAs substrates with a SiO2 thin buffer layer”, Appl. Phys. Lett., Vol. 61, 2524 (1992).
[15] S. H. Jeong, J. W Lee, S. B. Lee, J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties” Thin Solid Films, Vol. 78, 435 (2003).
[16] X. Q. Wei, Z. G. Zhang, M. Liu, C. S. Chen, G. Sun, C. S. Xue, H. Z. Zhuang and B. Y. Man, “Annealing effect on the microstructure and photoluminescence of ZnO thin films” Materials Chemistry and Physics Vol. 101, 285 (2007).
[17] Li-Wen Lai, Dissertation for Doctor of Philosophy, “Investigation of optical and electrical properties of pure and doped zinc oxide films by RF sputtering method”, National Cheng-Kung University, Taiwan, June (2009).
[18] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing”, Materials Today, Vol. 7, 34 (2004).
[19] Y. Chen, D. M. Bagnall, H. -J. Koh, K. -T. Park, K. Hiraga, Z. -Q. Zhu, T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization” J. Appl. Phys. Vol. 84, 3912 (1998).
[20] P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, “Growth of high-quality epitaxial ZnO films on α-Al2O3” J. Crystal Growth, Vol. 201, 627 (1999).
[21] R.D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R.P. Sharma, T. Venkatesan, M.C. Woods, R.T. Lareau, K.A. Jones, A.A. Iliadis,” High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for III–V nitrides “, Appl. Phys. Lett., Vol. 70, 2735 (1997).
[22] J. Narayan, K. Dovidenko, A.K. Sharma, S. Oktyabrsky,” Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures “, J. Appl. Phys. Vol. 84, 2597 (1998).
[23] Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. K. Tang, P. Yu, G.K.L. Wong, “Growth of ZnO Thin Film by Laser MBE: Lasing of Exciton at Room Temperature”,Phys. Stat. Sol., Vol. 202, 669 (1997).
[24] Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback,” Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD”, J. Electron. Mater. Vol. 29, 69 (2000).
[25] B. Hahn, G. Heindel, E. Pschoor-Schoberer, W. Gebhardt,” MOCVD layer growth of ZnO using DMZn and tertiary butanol”, Semicond. Sci. Tech. Vol. 13, 788 (1998).
[26] M. Kasuga, S. Ogawa,”Electronic Properties of Vapor-Grown Heteroepitaxial ZnO Film on Sapphire”, Jpn. J. Appl. Phys. Vol. 22, 794 (1983).
[27] N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, H. Yamamoto,” Growth of ZnO on sapphire (0001) by the vapor phase epitaxy using a chloride source”, Jpn. J. Appl. Phys. Vol. 38, L454 (1999).
[28] S. M. Han, and E. S. Aydil, J. Vac. Sci. Technol. A 15, 2893 (1997).
[29] K. Yamashita, and S. Odanaka, IEEE Trans. Electron Devices, Vol. 47, 90 (2000).
[30] S. J. Ding, L. Chen, X. G. Wan, P. F. Wu, J. Y. Zhang, D. W. Zhang, and J. T. Wang, Mater. Chem. Phys. Vol. 71, 125 (2001).
[31] J. Wu, Y. L. Wang, C. P. Liu, S. C. Chang, C. T. Kuo, and C. Ay,” Study on precipitations of fluorine-doped silicon oxide”, Thin Solid Films Vol. 447-448, 599 (2004).
[32] Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, and Y. Lee, “Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition “, J. Appl. Phys. Vol. 90, 3367 (2001).
[33] S. G. Yoon, S. M. Kang, W. S. Jung, H. Kim, S.-W. Kim and D. H. Yoon, “Low refraction properties of F-doped SiOC:H thin films prepared by PECVD”, Thin Solid Films, Vol. 516, 1410 (2008).
[34] K. H. Guenther, “Physical and Chemical Aspects in the Application of Thin Films on Optical Elements”, Appl. Opt. Vol. 23, 3612 (1984).
[35] H. K. Pulker, Coatings on Glass, Elsevier, Oxford, 1984, p.55, 58, 331, 342, 368
[36] S. H. Jeoung, J. Nishii, H. R. Park, J. K. Kim and B. T. Lee, “Influence of fluorine doping on SiOxFy films prepared from a TEOS/O2/CF4 mixture using a plasma enhanced chemical vapor deposition system”, Surface and Coatings Technology, Vol. 168, 51 (2003).
[37] Chang Sil Yang, Young Hun Yu, Heon-Ju Lee, Kwang-Man Lee, Chi Kyu Choi, “The effect of the CH4 plasma treatment on deposited SiOC(–H) films with low dielectric constant prepared by using TMS/O2 PECVD “, Thin Solid Films, Vol. 475, 150 (2005).
[38] Y. T. Kim, S. G. Yoon, D. H. Yoon, “Low index contrast planar SiON waveguides deposition by PECVD”, J. Korean Ceram. Soc. Vol. 42(3), 178, (2005).
[39] D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits, “Fabrication of Nanometer-Scale Patterns by Ion-Milling with Porous
Anodic Alumina Masks”, Adv. Mater., Vol. 12, 1252 (2000).
[40] H. Masuda, K. Yada, and A. Osaka, “Self-Ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution”, Jpn. J. Appl. Phys., Vol. 37, L1340 (1998).
[41] H. Masuda, K. Fukuda, “Ordered metal nanohole arrays made by a two-sStep replication of honeycomb structures of anodic alumina”, Science, Vol. 268, 1466 (1995).
[42] H. Masuda, F. Hasegwa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution”, J. Electro. Soc., Vol. 144, L127 (1997).
[43] A. L. Friedman, D. Brittain, and L. Menon, “Roles of pH and acid type in the anodic growth of porous alumina”, J. Chem. Phys., Vol. 127, 154717 (2007).
[44] G. D. Sulka, K. G. Parkoła, “Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid”, Electrochimica Acta, Vol. 52, 1880 (2007).
[45] S. Ono, M. Saito, M. Ishiguro, H. Asoh, “Controlling factor of self-ordering self-ordering of anodic porous alumina”, J. Electro. Soc., Vol. 151, B473 (2004).
[46] V. P. Parkhutik and V. I. Shershulsky, “Theoretical modeling of porous oxide growth on aluminum”, J. Phys. D: Appl. Phys., Vol. 25, 1258, (1992).
[47] F. Li, L. Zhang, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater., Vol. 10, 2470 (1998).
[48] O. Jessensky, F. Muller, and U. Gosele, “Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Appl. Phys. Lett., Vol. 72, 1173 (1998).
[49] J. P. O'Sullivan, and G.C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminum”, Proc. R. Soc., Vol. A. 317, 511 (1970).
[50] K. Ebihara, H. Takahashi, and M. Nagayama, “Structure and density of anodic oxide films formed on aluminium in oxalic acid solutions”, J. Met. Finish. Soc. Jpn., Vol. 34, pp. 548-, 1983.
[51] Chun-Wei Wu, Thesis for Master of Science, “The Effect of Light Current on Amorphous Thin film Solar Cell by the AAO/AZO Front Contact”, National Cheng Kung University, Taiwan, June 2010
[52] Xiang-Yang Ye, Mei-Chu Lo, Livia Brunner, Deborah Walker, Daniel Kahne and Suzanne Walker, “Better Substrates for Bacterial Transglycosylases”, J. Am. Chem. Soc. Vol. 123, 3155 (2001).
[53] J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, and R. G. Copeland,” Luminescent properties of solution-grown ZnO nanorods”, Appl. Phys. Lett., Vol. 88, 252103 (2006).
[54] A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt,” Excitonic fine structure and recombination dynamics in single-crystalline ZnO”, Phys. Rev. B 70, 195207 (2004).
[55] Bekeny, et al.,” Origin of the near-band-edge photoluminescence emission in aqueous chemically grown ZnO nanorods”, J. Appl. Phys. Vol. 100, 104317 (2006).
[56] Y Gu, Igor L. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark,” Quantum confinement in ZnO nanorods”, Appl. Phys. Lett. Vol. 85, 3833 (2004).
[57] W. II. Park, G. Yi, M. Kim, S. J. Pennycook,” ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy ”, Adv. Mater. Vol. 14, 1841 (2002).
[58] J .H. Liang, H.Y. Lai, Y.J. Chen, “Morphology transition of ZnO films with DMZn flow rate in MOCVD process”, Applied Surface Science, Vol. 7305, (2010)
[59] Jaejin Song and Sangwoo Lim,” Effect of Seed Layer on the Growth of ZnO Nanorods”, J. Phys. Chem. C 111, 596 (2007).
[60] R. A. Laudise, and A. A. Ballman,” The Solubility of Quartz under Hydrothermal Conditions”, J. Phys. Chem. Vol. 65, 1396 (1961).
[61] Xiaoxin Liu, Zhengguo Jin, Shaojing Bu, Juan Zhao, Ke Yu,” Preparation of ZnO nanorods and special lath-like crystals by aqueous chemical growth (ACG) method”, Materials Science and Engineering B 129, 139 (2006).
[62] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G Chai, H. Khallaf, S. Park, A. Schulte,” Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method”, Physica B 403, 3713 (2008).
[63] Youngjo Tak, Kijung Yong,” Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method”,J. Phys. Chem. B 109 ,19263 (2005).
[64] Y. Ding, X. Y. Kong, and Z. L. Wang,” Interface and defect structures of Zn–ZnO core–shell heteronanobelts”, J. Appl. Phys. Vol. 95, 306 (2004).
[65] C. H Chao, W. H. Lin, C. H Chen, C. H. Changjean and C. F. Lin,” Tunable light extraction efficiency of GaN light emitting diodes by ZnO nanorod arrays”, Semicond. Sci. Technol. Vol. 24, 105017 (2009).
[66] Kim J Y. Gessmann T, Schubert E F, Xi J Q, Luo H, Cho J. Sone C and Park Y,” GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer”, Appl. Phys. Lett. 88, 013501 (2006).
[67] S. Hirano, N. Tekeuchi, S. Sshimada, K. Masuya, K. Ibe, H. Tsunakawa, and M. Kuwabara,” Room-temperature nanowire ultraviolet lasers: An aqueous pathwayfor zinc oxide nanowires with low defect density”, J. Appl. Phys. Vol. 98, 094305 (2005).
[68] C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, and B. Rech,” Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films” ,J. Appl. Phys. Vol. 95, 1911 (2004).
[69] O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean, “Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications”,Solar Energy Materials & Solar Cells, Vol. 93, 1417 (2009).
[70] B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig and S. Wieder,“ Challenges in microcrystalline silicon based solar cell technology”, Thin Solid Films, Vol. 511, 548 (2006).
[71] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wanger, A. Löffl and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells“, Thin Solid Films, 351, 247 (1999).
[72] O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, and B. Rech, “Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour”, Thin Solid Films, Vol. 442, 80 (2003).
[73] Michael Berginski, Jürgen Hüpkes, Melanie Schulte, Gunnar Schöpe, Helmut Stiebig, and Matthias Wuttig, “ The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells“, J. Appl. Phys. Vol. 101, 074903 (2007).
[74] F. C. M. van de Pol, F. R. Blom, and Th. J. A. Popma, “R.f. planar magnetron sputtered ZnO films I: Structural properties”, Thin Solid Films, Vol. 204, 349 (1991).
[75] M. Mehta, C. Meier, J. Electrochem. Soc., Vol. 158, H1 19 (2011).
[76] Y. Igasaki, H. Saito, “The effects of deposition rate on the structural and electrical properties of ZnO:Al films deposited on (1120) oriented sapphire substrates”, J. Appl. Phys. Vol. 69, 2190 (1991).
[77] Ki Cheol Park, Dae Young Ma, Kun Ho Kim,” The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering “, Thin Solid Films, Vol. 305, 201 (1997).
[78] Z, C. Zin, I. Hamberg, C. G. Granqvist,” Optical properties of sputter‐deposited ZnO:Al thin films “, J. Appl. Phys. Vol. 64 5117 (1988).
[79] T. Minami, H. Nanto, S. Takata, Jpn.” Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering“, J. Appl. Phys. Vol. 24 L605 (1985).
[80] F. Ruske, A. Pflug, V. Sittinger, B. Szyszka, D. Greiner, B. Rech,“ Optical modeling of free electron behavior in highly doped ZnO films”, Thin Solid Films, Vol. 518, 1289 (2009).
[81] Gregory J. Exarhos, Xiao-Dong Zhou,” Discovery-based design of transparent conducting oxide films”, Thin Solid Films, Vol. 515, 7025 (2007).
[82] M. K. Bhan, J. Huang, and D. Cheung,” Deposition of stable, low k and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films”, Thin Solid Films, Vol. 308-309 507 (1997).
[83] J. Wu, Y. L. Wang, and C.T. Kuo,” Precipitates formation and its impact
on the structure of plasma-deposited fluorinated silicon oxide films”, Surf. Coat. Technol. Vol. 200, 3303 (2006).
[84] J. Wu, Y. L. Wang, and C. T. Kuo, “Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide”, J. Phys. Chem. Solids, Vol. 69, 555 (2008).
[85] S. M. Han, and E. S. Aydil, “Structure and chemical composition of fluorinated SiO2 films deposited using SiF4/O2 plasmas “, J. Vac. Sci. Technol. A 15, 2893 (1997).
[86] S. Lee, and J. W. Park,” Effect of fluorine on dielectric properties of SiOF films “, J. Appl. Phys. Vol. 80, 5260 (1996).
[87] T. Yoda , K. Fujita, H. Miyajima, R. Nakata, Y. Nishyama, Y. Nakasaki, and N. Hayasaka, Jpn.” High-Performance SiOF Film Fabricated Using a Dual-Frequency-Plasma Chemical Vapor Deposition system”, J. Appl. Phys. Vol. 43, 5984 (2004).
[88] M. K. Lee, C. M. Shih, S. M. Chang, H. C. Wang, and J. J. Huang, Jpn.” Characterization of Thermally Annealed Fluorinated Silicon Dioxide Films Prepared by Liquid-Phase Deposition”, J. Appl. Phys. Vol. 44, L220 (2005).
[89] V. Pankov, J. C. Alonson and A. Ortiz, Jpn.” The Effect of Hydrogen Addition on the Fluorine Doping Level of SiOF Films Prepared by Remote Plasma-Enhanced Chemical Vapor Deposition Using SiF4-Based Plasmas“, J. Appl. Phys. Vol. 37, 6135 (1998).
[90] V. L. Shannon, M. Z. Karim, “Study of the material properties and
suitability of plasma-deposited fluorine-doped silicon dioxides for low dielectric constant interlevel dielectrics “,Thin Solid Films, Vol. 270, 498 (1995).
[91] G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene,” Low‐temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy “, J. Vac. Sci. Technol. B. 5, 530 (1987).
[92] M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu,” Pure and fluorine‐doped silica films deposited in a hollow cathode reactor for integrated optic applications“, J. Vac. Sci. Technol. A. 14, 336 (1996).
[93] K. M. Byun, and W. J. Lee,” Water absorption characteristics of fluorinated silicon oxide films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition using SiH4 , SiF4 and O2”, Thin Solid Films, Vol. 376 26 (2000).
[94] M. Yoshimaru, S. Koizumi and K. Shimokawa,” Interaction between water and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition“, J. Vac. Sci. Technol. A. 15, 2908 (1997).
[95] H. Kitoh, M. Muroyama, M. Sasaki, M. Iwasawa and H. Kimura, “Formation of SiOF Films by Plasma-Enhanced Chemical Vapor Deposition Using (C2H5O)3SiF”, Jpn. J. Appl. Phys. 35, 1464 (1996).
[96] G. Lucovsky and H. Yang, “Fluorine atom induced decreases to the contribution of infrared vibrations to the static dielectric constant of Si–O–F alloy films “,J. Vac. Sci. Technol. A. 15, 836 (1997).
[97] M. K. Bhan, J. Huang, and D. Cheung, “Deposition of stable, low k and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films” ,Thin Solid Films, Vol. 308-309, 507 (1997).
[98] E. A. Irene, D. W. Dong, and R. J. Zeto, “Residual Stress, Chemical Etch Rate, Refractive Index, and Density Measurements on SiO2 Films Prepared Using High Pressure Oxygen” , J. Electrochem. Soc. Vol. 127, 396 (1980).
[99] S. M. Yun, H. Y. Chang, M. S. Kang, C. K. Choi,” Low dielectric constant CF/SiOF composite ®lm deposition in a helicon plasma reactor”, Thin Solid Films, Vol. 341, 109 (1999).
[100] T. Usami, K. Shimokawa, and M. Yoshimaru, “Low Dielectric Constant Interlayer Using Fluorine-Doped Silicon Oxide”, Jpn. J. Appl. Phys. Vol. 33, 408 (1994).
[101] K. M. Byun, and W. J. Lee, “Water absorption characteristics of fluorinated silicon oxide films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition using SiH4, SiF4 and O2”, : Thin Solid Films, Vol. 376, 26 (2000).
[102] S. E. Kim and Ch. Steinbrüchel, “Metal/fluorinated-dielectric interactions in microelectronic interconnections: Rapid diffusion of fluorine through aluminum “, Appl. Phys. Lett., Vol. 75 1902 (1999).
[103] C. R. Martin, "Nanomaterials: A Membrane-Based Synthetic Approach", Science, Vol. 266, 1961 (1994)
[104] B. B Lakshmi, Charles J. Patriss, and Charles. R. Martin," Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures",Chem. Mater. Vol. 9, 2544 (1997).
[105] R. C. Furneaux, W. R. Rigby, A. P. Davidson," The formation of controlled-porosity membranes from anodically oxidized alumium", Nature, Vol. 337, 147 (1989).
[106] J. S. King, C. W. Neff, C. J. Summers, W. Park, S. Blomquist, E. Forsythe, D. Morton,"High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition ", Appl. Phys. Lett. Vol. 83, 2566 (2003).
[107] J. S. King, E. Graugnard, C. J. Summers,"TiO2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition", Adv. Mater, Vol. 17, 1010 (2005)
[108] S. Z. Chu, K. Wada , S. Inoue, and S. Todoroki,"Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and Sol−Gel Process", Chem. Mater., Vol. 14, 266 (2002).
[109] Song-Zhu Chu, K. Wada , S. Inoue, S. Todoroki, Y. K. Takahashi, and K. Hono, "Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition", Chem. Mater., Vol. 14, 4595 (2002).
[110] O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwandw, S. B. Cronin, and M. S. Dresselhaus,"Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass†", Adv. Funct. Mater., Vol. 13, 631 (2003)
[111] Xudong Wang, Curtis Neff, Elton Graugnard, Yong Ding, Jeffrey S. King, Lawrence A. Pranger, Rina Tannenbaum, Zhong L. Wang, and Christopher J. Summers,"Photonic Crystals Fabricated Using Patterned Nanorod Arrays", Adv. Mater. Vol. 17, 2103 (2005).
[112] Chun-Wei Wu, Thesis for Master of Science, “The effect of light current on amorphous thin film solar cells by the AAO/AZO front contact”, National Cheng-Kung University, Taiwan, June (2010).