| 研究生: |
高芝恩 Kao, Chih-En |
|---|---|
| 論文名稱: |
去氧核醣核酸的修復機制在大腸癌抗藥性中所扮演的角色 The Role of Deoxyribonucleic Acid Repair Mechanisms in the Drug Resistance of Colorectal Cancer |
| 指導教授: |
蔡少正
Tsai, Shaw-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 結直腸癌 、Dukes分級系統 、TNM分級系統 、結直腸癌治療方法 、去氧核醣核酸修復 、抗藥性 |
| 外文關鍵詞: | Colorectal cancer (CRC), Dukes staging system, TNM staging system, CRC therapy, DNA repair, drug resistance |
| 相關次數: | 點閱:6 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結直腸癌(CRC)是全球常見且致死率極高的癌症之一。因此,本論文整理及分析去氧核醣核酸(DNA) 修復機制在CRC抗藥性中的所扮演的角色。首先介紹CRC在臨床上的兩大分期系統於預測病情和制定治療計畫十分重要,Dukes分期系統是依腫瘤侵犯深度和有無轉移分成A至D期,而TNM分期系統是根據腫瘤的大小與範圍、淋巴結轉移的情況及遠端的轉移來分階段。接著論述目前CRC主要的五種療法,分別是手術、放射線治療、化學治療、標靶治療和免疫治療。其中,放射治療是誘導DNA損傷以消滅腫瘤細胞,而化療藥物如5-Fluorouracil, Oxaliplatin等是破壞DNA的功能,免疫治療藥物如Pembrolizumab, Nivolumab等是增強病人的免疫系統去對抗錯配修復缺陷或高微衛星不穩定性的大腸癌,標靶治療藥物如Cetuximab, Bevacizumab則是抑制與腫瘤生長因子相關的路徑。雖然這些療法改善了患者的症狀,但是因為CRC細胞內DNA修復能力的增強,而使得病人產生抗性。然而CRC在治療過程中所產生的抗性可能與幾條主要的DNA修復途徑相關,這些途徑包括鹼基切除修復(OGG1/APE1 訊息傳導途徑)、核苷酸切除修復(ERCC1/XPA訊息傳導途徑)、錯配修復(MutS/EXO1訊息傳導途徑)、同源重組(MRN/BRCA訊息傳導途徑)以及非同源末端連接(DNA-PKcs/XRCC4訊息傳導途徑)。不過本評論性論文未提供原創性的實驗數據,而且未涉及其他導致抗性的因素如表觀遺傳調控、免疫反應及腫瘤微環境等論述。總結而言,透過回顧並整合過去研究的發現,本論文闡述DNA修復路徑如何與CRC治療過程中所產生抗性的相關性,以作為未來標靶治療的重要參考依據。
Colorectal cancer (CRC) is one of the most seen and deadly diseases globally. This thesis reviewed the role of deoxyribonucleic acid (DNA) repair mechanism in CRC drug resistance. First, the staging system for CRC such as the Dukes staging system and TNM staging system were introduced due to the essential role in CRC prognosis and treatment planning. The Dukes system stages the CRC by A to D and the TNM system stages the CRC by tumor size and invasion (T), lymph node involvement (N), and metastasis (M). Second, the current options for CRC treatments have a lot of approaches, including surgical intervention, radiation therapy, chemotherapy, targeted treatments, and immunotherapy. In particular, radiotherapy induces DNA damage to eliminate tumor cells and chemotherapeutical drugs such as 5-Fluorouracil and Oxaliplatin disrupt DNA function. In addition, immunotherapeutic drugs such as Pembrolizumab and Nivolumab enhance immune responses in tumors with mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H), and targeted therapeutical drugs such as Cetuximab and Bevacizumab inhibit tumor-promoting pathways. Although these therapies improve patient outcomes, resistance remains a huge challenge due to the enhanced DNA repair ability in CRC cells. The drug resistance of CRC treatment is associated with certain major DNA repair pathways, including base excision repair (OGG1/APE1 signaling pathway), nucleotide excision repair (ERCC1/XPA signaling pathway), mismatch repair (MutS/EXO1 signaling pathway), homologous recombination (MRN/BRCA signaling pathway) and non-homologous end joining (DNA-PKcs/XRCC4 signaling pathway). However, this literature-based review excluded the presentations of novel experimental data, and the description about epigenetic regulation, immune response, or tumor microenvironment. In conclusions, by reviewing and synthesizing findings from past studies, this thesis provided a clearer understanding of how DNA repair mechanisms contribute to therapeutic resistance in CRC, highlighted their relevance as potential therapeutic targets, and supported future efforts toward more effective and individualized treatment strategies for CRC.
1. Siegel, R. L., Giaquinto, A. N., Jemal, A. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians. 74(1), 12-49 (2024).
2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 71(3), 209-249 (2021).
3. Ministry of Health and Welfare, Taiwan. Cancer Registry Report: The incidence of colorectal cancer in Taiwan is one new case every 31 minutes and 14 seconds. Regular screening reduces the incidence of late-stage colorectal cancer by 29%. (2021).
4. Shek, D., Akhuba, L., Carlino, M. S., Nagrial, A., Moujaber, T., Read, S. A., Gao, B., Ahlenstiel, G. Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes. Cancers. 13, 4345 (2021).
5. Rawla, P., Sunkara, T., Barsouk, A. Epidemiology of CRC: incidence, mortality, survival, and risk factors. Przeglad Gastroenterologiczny. 14(2), 89-103 (2019).
6. Briggs, N. L., Ton, M., Malen, R. C., Reedy, A. M., Cohen, S. A., Phipps, A. I., Burnett-Hartman, A. N., Newcomb, P. A. Colorectal cancer pre-diagnostic symptoms are associated with anatomic cancer site. BMC Gastroenterology. 24(1), 65 (2024).
7. Douillard, J. Y., Oliner, K. S., Siena, S., Fuchs, C. S., Karthaus, M., Stoehlmacher, J., Lenz, H. J., & Rougier, P. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. The New England Journal of Medicine. 363, 2021-2031 (2010).
8. Puthillath, A., Patel, A., Fakih, M. G. Targeted therapies in the management of colorectal carcinoma: role of bevacizumab. OncoTargets and Therapy. 2, 1-15 (2009).
9. Le, D. T., Uram, J. N., Wang, H., Zukerberg, L., & Robbins, P. D. Programmed death-1 blockade in mismatch repair-deficient colorectal cancer. The New England Journal of Medicine. 372, 2509-2520 (2015).
10. Amodio, V., Vitiello, P. P., Bardelli, A., Germano, G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. British Journal of Cancer. 131(10), 1576-1590 (2024).
11. Primavera, F., Ferreira, M. The role of DNA damage response in cancer therapy resistance: A focus on colorectal cancer. Biomolecules. 10, 1019 (2020).
12. Fadlallah, H., El Masri, J., Fakhereddine, H., Youssef, J., Chemaly, C., Doughan, S., Abou-Kheir, W. Colorectal cancer: Recent advances in management and treatment. World Journal of Clinical Oncology. 15(9), 1136-1156 (2024).
13. Zhang, L., Li, Q., Hu, C., Zhang, Z., She, J., Shi, F. Real-world analysis of survival benefit of surgery and adjuvant therapy in elderly patients with colorectal cancer. Scientific Reports. 13(1), 14866 (2023).
14. Heald, R. J., Husband, E. M., Ryall, R. D. The mesorectum in rectal cancer surgery—the clue to pelvic recurrence? British Journal of Surgery. 69(10), 613-616 (1982).
15. American Cancer Society. (2024). Surgery for Colon Cancer.
16. Lacy, A. M., García-Valdecasas, J. C., Delgado, S., Castells, A., Taurá, P., Piqué, J. M., Visa, J. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. The Lancet. 359(9325), 2224-2229 (2002).
17. Fleshman, J., Branda, M., Sargent, D. J., Boller, A. M., George, V., Abbas, M., Peters, W. R. Jr., Maun, D., Chang, G., Herline, A., Fichera, A., Mutch, M., Wexner, S., Whiteford, M., Marks, J., Birnbaum, E., Margolin, D., Larson, D., Marcello, P., Posner, M., Read, T., Monson, J., Wren, S. M., Pisters, P. W., Nelson, H. Effect of laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes: The ACOSOG Z6051 randomized clinical trial. JAMA - Journal of the American Medical Association. 314(13), 1346-1355 (2015).
18. Brennan, K. E., Farooq, A. O., Mckechnie, T. J., Wiseman, V. H., Kong, W., Bankhead, C. R., Heneghan, C. J., Rai, M. S., Patel, S. V. Local excision for T1 rectal cancer: A population-based study of practice patterns and oncological outcomes. Colorectal Disease. 27(1), e17276 (2025).
19. Rodriguez-Bigas, M. A., Lin, E. H., Crane, C. H. Surgical Management of Colorectal Cancer. Holland-Frei Cancer Medicine, BC Decker, Hamilton (ON), (2003).
20. Nguyen, D. A., Mai-Phan, T. A., Do, P. T. T., Thai, T. T. Emergency surgery for obstructed colorectal cancer in Vietnam. Asian Journal of Surgery. 43(6), 683-689 (2020).
21. De Felice, F., Musio, D., Izzo, L., Tombolini, V. Neoadjuvant chemoradiotherapy for locally advanced rectal cancer: The debate continues. World Journal of Gastrointestinal Oncology. 6(12), 438-440 (2014).
22. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians. 70(1), 7-30 (2020).
23. Pak, H., Maghsoudi, L. H., Soltanian, A., Gholami, F. Surgical complications in colorectal cancer patients. Annals of Medicine and Surgery (Lond). 55, 13-18 (2020).
24. Ryoo, S. B. Low anterior resection syndrome. Annals of Gastroenterology Surgery. 7(5), 719-724 (2023).
25. Tanaka, A., Uehara, K., Aiba, T., Ogura, A., Mukai, T., Yokoyama, Y., Ebata, T., Kodera, Y., Nagino, M. The role of surgery for locally recurrent and second recurrent rectal cancer with metastatic disease. Surgical Oncology. 35, 328-335 (2020).
26. Dimitroulis, D., Kouraklis, G. Surgical dilemmas in the management of colorectal liver metastases: The role of timing. World Journal of Gastroenterology. 22(21), 4963-4965 (2016).
27. Nordlinger, B., Vauthey, J. N., Poston, G., Benoist, S., Rougier, P., Van Cutsem, E. The timing of chemotherapy and surgery for the treatment of colorectal liver metastases. Clinical Colorectal Cancer. 9(4), 212-218 (2010).
28. Lingas, E. C. Early-Onset Colon Cancer: A Narrative Review of Its Pathogenesis, Clinical Presentation, Treatment, and Prognosis. Cureus. 15(9), e45404 (2023).
29. Normann, M., Ekerstad, N., Angenete, E., Prytz, M. Mortality and morbidity after colorectal cancer resection surgery in elderly patients: a retrospective population-based study in Sweden. World Journal of Surgical Oncology. 22(1), 23 (2024).
30. Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. Radiotherapy and chemotherapy: A review on the impact of the cell cycle. Cancer Research. 72, 296-308 (2012).
31. Quezada-Diaz, F. F., Smith, J. J. Neoadjuvant Therapy for Rectal Cancer. Surgical Oncology Clinics of North America. 31(2), 279-291 (2022).
32. Duzova, M., Basaran, H., Inan, G., Gul, O. V., Eren, O. O., Korez, M. K. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: Outcomes of survival, toxicity, sphincter preserving and prognostic factors. Transplant Immunology. 69, 101489 (2021).
33. Sauer, R., Liersch, T., Merkel, S., Fietkau, R., Hohenberger, W., Hess, C., Becker, H., Raab, H. R., Villanueva, M. T., Witzigmann, H., Wittekind, C., Beissbarth, T., Rödel, C. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. Journal of Clinical Oncology. 30(16), 1926-1933 (2012).
34. Trakarnsanga, A., Ithimakin, S., Weiser, M. R. Treatment of locally advanced rectal cancer: controversies and questions. World Journal of Gastroenterology. 18(39), 5521-5532 (2012).
35. Scanlon, S. E., Glazer, P. M. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair (Amsterdam). 32, 180-189 (2015).
36. Zhan, Y., Cheng, X., Mei, P., Tan, S., Feng, W., Jiang, H. Safety of first-line systemic therapy in patients with metastatic colorectal cancer: a network meta-analysis of randomized controlled trials. BMC Cancer. 24(1), 893 (2024).
37. Mayer, R. J., Van Cutsem, E., Falcone, A., Yoshino, T., Garcia-Carbonero, R., Mizunuma, N., Yamazaki, K., Shimada, Y., Tabernero, J., Komatsu, Y., Sobrero, A., Boucher, E., Peeters, M., Tran, B., Lenz, H. J., Zaniboni, A., Hochster, H., Cleary, J. M., Prenen, H., Benedetti, F., Mizuguchi, H., Makris, L., Ito, M., Ohtsu, A.; RECOURSE Study Group. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. The New England Journal of Medicine. 372(20), 1909-1919 (2015).
38. Longley, D. B., Harkin, D. P., Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer. 3(5), 330-338 (2003).
39. Ychou, M., Conroy, T., Seitz, J. F., Gourgou, S., Hua, A., Mery-Mignard, D., Kramar, A. An open phase I study assessing the feasibility of the triple combination: oxaliplatin plus irinotecan plus leucovorin/5-fluorouracil every 2 weeks in patients with advanced solid tumors. Annals of Oncology. 14(3), 481-489 (2003).
40. Varghese, V., Magnani, L., Harada-Shoji, N., Mauri, F., Szydlo, R. M., Yao, S., Lam, E. W., Kenny, L. M. FOXM1 modulates 5-FU resistance in colorectal cancer through regulating TYMS expression. Scientific Reports. 9(1), 1505 (2019).
41. Machover, D. A comprehensive review of 5-fluorouracil and leucovorin in patients with metastatic colorectal carcinoma. Cancer. 80(7), 1179-1187 (1997).
42. Peters, G. J., van Groeningen, C. J., van der Wilt, C. L., Meijer, S., Smid, K., Laurensse, E., Pinedo, H. M. Time course of inhibition of thymidylate synthase in patients treated with fluorouracil and leucovorin. Seminars in Oncology. 19(2 Suppl 3), 26-35 (1992).
43. Engstrom, P. F., Arnoletti, J. P., Benson, A. B. 3rd, Chen, Y. J., Choti, M. A., Cooper, H. S., Covey, A., Dilawari, R. A., Early, D. S., Enzinger, P. C., Fakih, M. G., Fleshman, J. Jr, Fuchs, C., Grem, J. L., Kiel, K., Knol, J. A., Leong, L. A., Lin, E., Mulcahy, M. F., Rao, S., Ryan, D. P., Saltz, L., Shibata, D., Skibber, J. M., Sofocleous, C., Thomas, J., Venook, A. P., Willett, C.; National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: colon cancer. Journal of the National Comprehensive Cancer Network 7(8), 778-831 (2009).
44. Peters, G. J., Kathmann, I., Giovannetti, E., Smid, K., Assaraf, Y. G., Jansen, G. The role of l-leucovorin uptake and metabolism in the modulation of 5-fluorouracil efficacy and antifolate toxicity. Frontiers in Pharmacology. 15, 1450418 (2024).
45. Pentheroudakis, G., Twelves, C. Capecitabine (Xeloda): from the laboratory to the patient's home. Clinical Colorectal Cancer. 2(1), 16-23 (2002).
46. Tseng, K. Y., Yang, M. Y., Chen, W. S., Jiang, J. K., Wang, H. S., Chang, S. C., Lan, Y. T., Lin, C. C., Lin, H. H., Huang, S. C., Cheng, H. H., Yang, Y. W., Lin, Y. Z., Chang, C. Y., Teng, H. W. Combining moderate dosage of Bevacizumab with TAS-102 provides longer progression-free time in refractory metastatic colorectal cancer. International Journal of Colorectal Disease. 39(1), 195 (2024).
47. Zhang, J., Zhou, L., Zhao, S., El-Deiry, W. S. Regorafenib synergizes with TAS102 against multiple gastrointestinal cancers and overcomes cancer stemness, trifluridine-induced angiogenesis, ERK1/2 and STAT3 signaling regardless of KRAS or BRAF mutational status. Oncotarget. 15, 424-438 (2024).
48. Nichetti, F., Falvella, F. S., Miceli, R., Cheli, S., Gaetano, R., Fucà, G., Infante, G., Martinetti, A., Antoniotti, C., Falcone, A., Di Bartolomeo, M., Cremolini, C., de Braud, F., Pietrantonio, F. Is a pharmacogenomic panel useful to estimate the risk of oxaliplatin-related neurotoxicity in colorectal cancer patients? Pharmacogenomics Journal. 19(5), 465-472 (2019).
49. Comella, P., Casaretti, R., Sandomenico, C., Avallone, A., Franco, L. Role of oxaliplatin in the treatment of colorectal cancer. Therapeutic Clinical Risk Management. 5(1), 229-238 (2009).
50. Raymond, E., Chaney, S. G., Taamma, A., Cvitkovic, E. Oxaliplatin: a review of preclinical and clinical studies. Annals of Oncology. 9(10), 1053-1071 (1998).
51. Druzhkova, I., Potapov, A., Ignatova, N., Bugrova, M., Shchechkin, I., Lukina, M., Shimolina, L., Kolesnikova, E., Shirmanova, M., Zagaynova, E. Cell hiding in colorectal cancer: correlation with response to chemotherapy in vitro and in vivo. Scientific Reports. 14(1), 28762 (2024).
52. Saif, M. W., Reardon, J. Management of oxaliplatin-induced peripheral neuropathy. Therapeutic Clinical Risk Management. 1(4), 249-258 (2005).
53. Shen, Y., Li, C., Liu, W., Mao, W., Qian, H., Wang, H., Xu, Q. Clinical analysis of hypersensitivity reactions to oxaliplatin among colorectal cancer patients. Oncology Research. 26(5), 801-807 (2018).
54. Gilbert, D., Chalmers, A., El-Khamisy, S. Topoisomerase I inhibition in colorectal cancer: biomarkers and therapeutic targets. British Journal of Cancer. 106, 18–24 (2012).
55. Páez, D., Tobeña, M., Fernández-Plana, J., Sebio, A., Virgili, A. C., Cirera, L., Barnadas, A., Riera, P., Sullivan, I., Salazar, J. Pharmacogenetic clinical randomised phase II trial to evaluate the efficacy and safety of FOLFIRI with high-dose irinotecan (HD-FOLFIRI) in metastatic colorectal cancer patients according to their UGT1A1 genotype. British Journal of Cancer. 120(2), 190-195 (2019).
56. Li, X. X., Zheng, H. T., Peng, J. J., Huang, L. Y., Shi, D. B., Liang, L., Cai, S. J. RNA-seq reveals determinants for irinotecan sensitivity/resistance in colorectal cancer cell lines. International Journal of Clinical and Experimental Pathology. 7(5), 2729-2736 (2014).
57. Kweekel, D., Guchelaar, H. J., Gelderblom, H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treatment Reviews. 34(7), 656-669 (2008).
58. Paz, M. M., Zhang, X., Lu, J., Holmgren, A. A new mechanism of action for the anticancer drug mitomycin C: mechanism-based inhibition of thioredoxin reductase. Chemical Research in Toxicology. 25(7), 1502-1511 (2012).
59. Shah, G., Yamin, H., Smith, H. Mitomycin-C-induced TTP/HUS treated successfully with rituximab: Case report and review of the literature. Case Reports in Hematology. 2013, 130978 (2013).
60. Zhang, F., Zhang, Y., Jia, Z., Wu, H., Gu, K. Oxaliplatin-based regimen is superior to cisplatin-based regimen in tumour remission as first-line chemotherapy for advanced gastric cancer: A meta-analysis. Journal of Cancer. 10(8), 1923-1929 (2019).
61. Popov, I., Carrato, A., Sobrero, A., Vincent, M., Kerr, D., Labianca, R., Raffaele Bianco, A., El-Serafi, M., Bedenne, L., Paillot, B., Mini, E., Sanches, E., Welch, J., Collette, L., Praet, M., Wils, J. Raltitrexed (Tomudex) versus standard leucovorin-modulated bolus 5-fluorouracil: Results from the randomised phase III Pan-European Trial in Adjuvant Colon Cancer 01 (PETACC-1). European Journal of Cancer. 44(15), 2204-2211 (2008).
62. Tashiro, J., Yamaguchi, S., Ishii, T., Kondo, H., Hara, K., Shimizu, H., Takemoto, K., Suzuki, A. Oncologic outcomes of oral adjuvant chemotherapy regimens in stage III colon cancer: Tegafur-uracil plus leucovorin versus capecitabine. Clinical Colorectal Cancer. 16(3), e141-e145 (2017).
63. Arkenau, H. T., Bermann, A., Rettig, K., Strohmeyer, G., Porschen, R.; Arbeitsgemeinschaft Gastrointestinale Onkologie. 5-fluorouracil plus leucovorin is an effective adjuvant chemotherapy in curatively resected stage III colon cancer: long-term follow-up results of the adjCCA-01 trial. Annals of Oncology. 14(3), 395-399 (2003).
64. Isoyama, S., Mori, S., Sugiyama, D., Kojima, Y., Tada, Y., Shitara, K., Hinohara, K., Dan, S., Nishikawa, H. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal. Journal of Immunotherapy for Cancer. 9(8), e002279 (2021).
65. Li, K., Yuan, Z., Lyu, J., Ahn, E., Davis, S. J., Ahmed, R., Zhu, C. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nature Communications. 12(1), 2746 (2021).
66. Pardoll, D. M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer. 12, 252-264 (2012).
67. Diaz, L. A. Jr., Shiu, K. K., Kim, T. W., Jensen, B. V., Jensen, L. H., Punt, C., Smith, D., Garcia-Carbonero, R., Benavides, M., Gibbs, P., de la Fourchardiere, C., Rivera, F., Elez, E., Le, D. T., Yoshino, T., Zhong, W. Y., Fogelman, D., Marinello, P., Andre, T.; KEYNOTE-177 Investigators. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncology. 23(5), 659-670 (2022).
68. Kang, S. P., Gergich, K., Lubiniecki, G. M., de Alwis, D. P., Chen, C., Tice, M. A. B., Rubin, E. H. Pembrolizumab KEYNOTE-001: an adaptive study leading to accelerated approval for two indications and a companion diagnostic. Annals of Oncology. 28(6), 1388-1398 (2017).
69. Ganesh, K., Stadler, Z. K., Cercek, A., Mendelsohn, R. B., Shia, J., Segal, N. H., Diaz, L. A. Jr. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nature Reviews Gastroenterology & Hepatology. 16(6), 361-375 (2019).
70. van Bussel, M. T. J., Beijnen, J. H., Brandsma, D. Intracranial antitumor responses of nivolumab and ipilimumab: a pharmacodynamic and pharmacokinetic perspective, a scoping systematic review. BMC Cancer. 19(1), 519 (2019).
71. Oaknin, A., Tinker, A. V., Gilbert, L., Samouëlian, V., Mathews, C., Brown, J., Barretina-Ginesta, M. P., Moreno, V., Gravina, A., Abdeddaim, C., Banerjee, S., Guo, W., Danaee, H., Im, E., Sabatier, R. Clinical activity and safety of the anti-PD-1 monoclonal antibody dostarlimab for patients with recurrent or advanced dMMR endometrial cancer. Future Oncology. 17(29), 3781-3785 (2021).
72. Alkholifi, F. K., Alsaffar, R. M. Dostarlimab, an inhibitor of PD-1/PD-L1: A new paradigm for the treatment of cancer. Medicina (Kaunas). 58(11), 1572 (2022).
73. Shukla, S., Patel, H., Chen, S., Sun, R., Wei, L., Chen, Z. S. Dostarlimab in the treatment of mismatch repair deficient recurrent or advanced endometrial cancer. Cancer Pathogens Therapy. 2(3), 135-141 (2023).
74. Oaknin, A., Gilbert, L., Tinker, A. V., Brown, J., Mathews, C., Press, J., Sabatier, R., O'Malley, D. M., Samouëlian, V., Boni, V., Duska, L., Ghamande, S., Ghatage, P., Kristeleit, R., Leath, C. III, Guo, W., Im, E., Zildjian, S., Han, X., Duan, T., Veneris, J., Pothuri, B. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: interim results from GARNET-a phase I, single-arm study. Journal of Immunotherapy for Cancer. 10(1), e003777 (2022).
75. Wei, S. C., Levine, J. H., Cogdill, A. P., Zhao, Y., Anang, N. A. S., Andrews, M. C., Sharma, P., Wang, J., Wargo, J. A., Pe'er, D., Allison, J. P. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 170(6), 1120-1133.e17 (2017).
76. Tarhini, A. A. Tremelimumab: a review of development to date in solid tumors. Immunotherapy. 5(3), 215-229 (2013).
77. Eng, C., Kim, T. W., Bendell, J., Argilés, G., Tebbutt, N. C., Di Bartolomeo, M., Falcone, A., Fakih, M., Kozloff, M., Segal, N. H., Sobrero, A., Yan, Y., Chang, I., Uyei, A., Roberts, L., Ciardiello, F.; IMblaze370 Investigators. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncology. 20(6), 849-861 (2019).
78. Johnson, B., Haymaker, C. L., Parra, E. R., Soto, L. M. S., Wang, X., Thomas, J. V., Dasari, A., Morris, V. K., Raghav, K., Vilar, E., Kee, B. K., Eng, C., Parseghian, C. M., Wolff, R. A., Lee, Y., Lorenzini, D., Laberiano-Fernandez, C., Verma, A., Lang, W., Wistuba, I. I., Futreal, A., Kopetz, S., Overman, M. J. Phase II study of durvalumab (anti-PD-L1) and trametinib (MEKi) in microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Journal of Immunotherapy for Cancer. 10(8), e005332 (2022).
79. Español-Rego, M., Fernández-Martos, C., Elez, E., Foguet, C., Pedrosa, L., Rodríguez, N., Ruiz-Casado, A., Pineda, E., Cid, J., Cabezón, R., Oliveres, H., Lozano, M., Ginés, A., García-Criado, A., Ayuso, J. R., Pagés, M., Cuatrecasas, M., Torres, F., Thomson, T., Cascante, M., Benítez-Ribas, D., Maurel, J. A Phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study. Cancer Immunology Immunotherapy. 72(4), 827-840 (2023).
80. Xie, Y. H., Chen, Y. X., Fang, J. Y. Comprehensive review of targeted therapy for colorectal cancer. Signaling Pathways and Targeted Therapy. 5, 22 (2020).
81. Balagula, Y., Wu, S., Su, X., Lacouture, M. E. The effect of cytotoxic chemotherapy on the risk of high-grade acneiform rash to cetuximab in cancer patients: a meta-analysis. Annals of Oncology. 22(11), 2366-2374 (2011).
82. Zhou, J., Ji, Q., Li, Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. Journal of Experimental & Clinical Cancer Research. 40(1), 328 (2021).
83. Bokemeyer, C., Ciardiello, F., Dubreuil, O., Guigay, J., Kasper, S., Pfeiffer, P., Pinto, C., Yamaguchi, K., Yoshino, T., Zielinski, C., Esser, R., Tabernero, J. Cetuximab every 2 weeks versus standard weekly dosing administration schedule. Future Oncology. 20(7), 393-407 (2024).
84. Ferrara, N. VEGF as a therapeutic target in cancer. Oncology. 69 Suppl 3, 11-16 (2005).
85. André, T., Vernerey, D., Im, S. A., Bodoky, G., Buzzoni, R., Reingold, S., Rivera, F., McKendrick, J., Scheithauer, W., Ravit, G., Fountzilas, G., Yong, W. P., Isaacs, R., Österlund, P., Liang, J. T., Creemers, G. J., Rakez, M., Van Cutsem, E., Cunningham, D., Tabernero, J., de Gramont, A. Bevacizumab as adjuvant treatment of colon cancer: updated results from the S-AVANT phase III study by the GERCOR Group. Annals of Oncology. 31(2), 246-256 (2020).
86. Minhajat, R., Harjianti, T., Islam, I. C., Winarta, S., Liyadi, Y. N., Bamatraf, N. P., Amanuddin, R. Bevacizumab side effects and adverse clinical complications in colorectal cancer patients: review article. Annals of Medicine and Surgery (London). 85(8), 3931-3937 (2023).
87. Syed, Y. Y., McKeage, K. Aflibercept: A review in metastatic colorectal cancer. Drugs. 75(12), 1435-1445 (2015).
88. Arai, H., Battaglin, F., Wang, J., Lo, J. H., Soni, S., Zhang, W., Lenz, H. J. Molecular insight of regorafenib treatment for colorectal cancer. Cancer Treatment Reviews. 81, 101912 (2019).
89. Rey, J. B., Launay-Vacher, V., Tournigand, C. Regorafenib as a single-agent in the treatment of patients with gastrointestinal tumors: an overview for pharmacists. Targeted Oncology. 10(2), 199-213 (2015).
90. Kopetz, S., Grothey, A., Yaeger, R., Van Cutsem, E., Desai, J., Yoshino, T., Wasan, H., Ciardiello, F., Loupakis, F., Hong, Y. S., Steeghs, N., Guren, T. K., Arkenau, H. T., Garcia-Alfonso, P., Pfeiffer, P., Orlov, S., Lonardi, S., Elez, E., Kim, T. W., Schellens, J. H. M., Guo, C., Krishnan, A., Dekervel, J., Morris, V., Calvo Ferrandiz, A., Tarpgaard, L. S., Braun, M., Gollerkeri, A., Keir, C., Maharry, K., Pickard, M., Christy-Bittel, J., Anderson, L., Sandor, V., Tabernero, J. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. The New England Journal of Medicine. 381(17), 1632-1643 (2019).
91. Chau, I., Cunningham, D., Hickish, T., Massey, A., Higgins, L., Osborne, R., Botwood, N., Swaisland, A. Gefitinib and irinotecan in patients with fluoropyrimidine-refractory, irinotecan-naive advanced colorectal cancer: a phase I-II study. Annals of Oncology. 18(4), 730-737 (2007).
92. Rothenberg, M. L., LaFleur, B., Levy, D. E., Washington, M. K., Morgan-Meadows, S. L., Ramanathan, R. K., Berlin, J. D., Benson, A. B. 3rd, Coffey, R. J. Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. Journal of Clinical Oncology. 23(36), 9265-9274 (2005).
93. Townsley, C. A., Major, P., Siu, L. L., Dancey, J., Chen, E., Pond, G. R., Nicklee, T., Ho, J., Hedley, D., Tsao, M., Moore, M. J., Oza, A. M. Phase II study of erlotinib (OSI-774) in patients with metastatic colorectal cancer. British Journal of Cancer. 94(8), 1136-1143 (2006).
94. Gillen, D. L., Meyskens, F. L., Morgan, T. R., Zell, J. A., Carroll, R., Benya, R., Chen, W. P., Mo, A., Tucker, C., Bhattacharya, A., Huang, Z., Arcilla, M., Wong, V., Chung, J., Gonzalez, R., Rodriguez, L. M., Szabo, E., Rosenberg, D. W., Lipkin, S. M. A phase IIa randomized, double-blind trial of erlotinib in inhibiting epidermal growth factor receptor signaling in aberrant crypt foci of the colorectum. Cancer Prevention Research (Philadelphia). 8(3), 222-230 (2015).
95. Mross, K., Fasol, U., Frost, A., Benkelmann, R., Kuhlmann, J., Büchert, M., Unger, C., Blum, H., Hennig, J., Milenkova, T. P., Tessier, J., Krebs, A. D., Ryan, A. J., Fischer, R. DCE-MRI assessment of the effect of vandetanib on tumor vasculature in patients with advanced colorectal cancer and liver metastases: a randomized phase I study. Journal of Angiogenesis Research. 1, 5 (2009).
96. Benli, Y., Arıkan, H., Akbulut-Çalışkan, Ö. HER2-targeted therapy in colorectal cancer: a comprehensive review. Clinical and Translational Oncology. (2025).
97. Meric-Bernstam, F., Hurwitz, H., Raghav, K. P. S., McWilliams, R. R., Fakih, M., VanderWalde, A., Swanton, C., Kurzrock, R., Burris, H., Sweeney, C., Bose, R., Spigel, D. R., Beattie, M. S., Blotner, S., Stone, A., Schulze, K., Cuchelkar, V., Hainsworth, J. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncology. 20(4), 518-530 (2019).
98. Hoeijmakers, J. H. J. DNA damage, aging, and cancer. The New England Journal of Medicine. 361, 1475-1485 (2009).
99. Hall, M., Johnson, R. T. The role of DNA repair in the prevention of cancer. Molecular Aspects of Medicine. 17(3), 235-283 (1996).
100. Lord, C. J., & Ashworth, A. The DNA damage response and cancer therapy. Nature. 481, 287-294 (2012).
101. Jackson, S. P., Bartek, J. The DNA-damage response in human biology and disease. Nature 461(7267), 1071-1078 (2009).
102. Gohil, D., Sarker, A. H., Roy, R. Base excision repair: mechanisms and impact in biology, disease, and medicine. International Journal of Molecular Sciences 24(18), 14186 (2023).
103. Krokan, H. E., Bjørås, M. Base excision repair. Cold Spring Harbor Perspectives in Biology 5(4), a012583 (2013).
104. Mirza-Aghazadeh-Attari, M., Darband, S. G., Kaviani, M., Mihanfar, A., Aghazadeh Attari, J., Yousefi, B., Majidinia, M. DNA damage response and repair in colorectal cancer: defects, regulation and therapeutic implications. DNA Repair 69, 34-52 (2018).
105. Jones, N. D., Saito, S., & Kolodner, R. D. MUTYH-associated polyposis. The American Journal of Human Genetics. 70, 1557-1560 (2002).
106. Poulsen, M. L., Bisgaard, M. L. MUTYH Associated Polyposis (MAP). Current Genomics 9(6), 420-435 (2008).
107. Zhang, Y., He, B. S., Pan, Y. Q., Xu, Y. Q., Wang, S. K. Association of OGG1 Ser326Cys polymorphism with colorectal cancer risk: a meta-analysis. International Journal of Colorectal Disease 26(12), 1525-1530 (2011).
108. Nadkarni, A., Burns, J. A., Gandolfi, A., Chowdhury, M. A., Cartularo, L., Berens, C., Geacintov, N. E., Scicchitano, D. A. Nucleotide excision repair and transcription-coupled DNA repair abrogate the impact of DNA damage on transcription. Journal of Biological Chemistry 291(2), 848-861 (2016).
109. Sugitani, N., Sivley, R. M., Perry, K. E., Capra, J. A., Chazin, W. J. XPA: A key scaffold for human nucleotide excision repair. DNA Repair 44, 123-135 (2016).
110. Huang, Y. J., Huang, M. Y., Cheng, T. L., Kuo, S. H., Ke, C. C., Chen, Y. T., Hsieh, Y. C., Wang, J. Y., Cheng, C. M., Chuang, C. H. ERCC1 overexpression increases radioresistance in colorectal cancer cells. Cancers (Basel) 14(19), 4798 (2022).
111. Feng, X., Liu, J., Gong, Y., Gou, K., Yang, H., Yuan, Y., Xing, C. DNA repair protein XPA is differentially expressed in colorectal cancer and predicts better prognosis. Cancer Medicine 7(6), 2339-2349 (2018).
112. Li, X., Cao, G., Liu, X., Tang, T. S., Guo, C., Liu, H. Polymerases and DNA repair in neurons: implications in neuronal survival and neurodegenerative diseases. Frontiers in Cellular Neuroscience 16, 852002 (2022).
113. Park, S. J., Ciccone, S. L., Freie, B., Kurimasa, A., Chen, D. J., Li, G. C., Clapp, D. W., Lee, S. H. A positive role for the Ku complex in DNA replication following strand break damage in mammals. Journal of Biological Chemistry 279(7), 6046-6055 (2004).
114. Wright, W. D., Shah, S. S., Heyer, W. D. Homologous recombination and the repair of DNA double-strand breaks. Journal of Biological Chemistry 293(27), 10524-10535 (2018).
115. Stracker, T. H., Williams, B. R., Deriano, L., Theunissen, J. W., Adelman, C. A., Roth, D. B., Petrini, J. H. Artemis and nonhomologous end joining-independent influence of DNA-dependent protein kinase catalytic subunit on chromosome stability. Molecular and Cellular Biology 29(2), 503-514 (2009).
116. Lee, D. Y., Bermúdez-Cruz, R. M., Díaz-Chávez, J. Editorial: The role of DNA repair pathways in resistance to chemotherapy and radiotherapy in cancer. Frontiers in Oncology 12, 894357 (2022).
117. Wang, M., Chen, S., Ao, D. Targeting DNA repair pathway in cancer: mechanisms and clinical application. MedComm 2(4), 654-691 (2021).
118. Chen, S., Zhang, J., Wang, R., Luo, X., Chen, H. The platinum-based treatments for advanced non-small cell lung cancer, is low/negative ERCC1 expression better than high/positive ERCC1 expression? A meta-analysis. Lung Cancer 70(1), 63-70 (2010).
119. Laufs, V., Altieri, B., Sbiera, S., Kircher, S., Steinhauer, S., Beuschlein, F., Quinkler, M., Willenberg, H. S., Rosenwald, A., Fassnacht, M., Ronchi, C. L. ERCC1 as predictive biomarker to platinum-based chemotherapy in adrenocortical carcinomas. European Journal of Endocrinology 178(2), 181-188 (2018).
120. Giannini, G., Rinaldi, C., Ristori, E., Ambrosini, M. I., Cerignoli, F., Viel, A., Bidoli, E., Berni, S., D'Amati, G., Scambia, G., Frati, L., Screpanti, I., Gulino, A. Mutations of an intronic repeat induce impaired MRE11 expression in primary human cancer with microsatellite instability. Oncogene 23(15), 2640-2647 (2004).
121. Li, J., Xu, X. DNA double-strand break repair: a tale of pathway choices. Acta Biochimica et Biophysica Sinica (Shanghai) 48(7), 641-646 (2016).
122. Sandhu, S. K., Yap, T. A., de Bono, J. S. The emerging role of poly(ADP-Ribose) polymerase inhibitors in cancer treatment. Current Drug Targets 12(14), 2034-2044 (2011).
123. Napolitano, S., Martini, G., Martinelli, E., Belli, V., Parascandolo, A., Laukkanen, M. O., Sforza, V., Morgillo, F., Ciardiello, D., Troiani, T. Therapeutic efficacy of SYM004, a mixture of two anti-EGFR antibodies in human colorectal cancer with acquired resistance to cetuximab and MET activation. Oncotarget. 8(40), 67592-67604 (2017).
124. Qin, X., Ruan, H., Yuan, L., Lin, L. Colorectal cancer tumor stem cells mediate bevacizumab resistance through the signal IL-22-STAT3 signaling pathway. 3 Biotech. 13(10), 327 (2023).
125. Wei, N., Chu, E., Wu, S. Y., Wipf, P., Schmitz, J. C. The cytotoxic effects of regorafenib in combination with protein kinase D inhibition in human colorectal cancer cells. Oncotarget. 6(7), 4745-4756 (2015).
126. Rubio-Cuesta, B., Carretero-Puche, C., Llamas, P., Sarmentero, J., Gil-Calderon, B., Lens-Pardo, A., Antón-Pascual, B., Rubio-González, E., Cámara-Jurado, M., Salamanca, J., Rueda-Fernández, D., Delcuratolo, M. D., Garcia-Carbonero, R. Co-targeting SRC overcomes resistance to BRAF inhibitors in colorectal cancer. British Journal of Cancer. (2025).
127. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487(7407), 330-337 (2012).
128. Mukherji, R., Marshall, J. L., Seeber, A. Genomic alterations and their implications on survival in nonmetastatic colorectal cancer: status quo and future perspectives. Cancers (Basel). 12(8), (2001).
129. Yang, Y., Wang, D., Jin, L., Wu, G., Bai, Z., Wang, J., Yao, H., Zhang, Z. Prognostic value of the combination of microsatellite instability and BRAF mutation in colorectal cancer. Cancer Management and Research. 10, 3911-3929 (2018).
130. Wang, H., Tang, R., Jiang, L., Jia, Y. The role of PIK3CA gene mutations in colorectal cancer and the selection of treatment strategies. Frontiers in Pharmacology. 15, 1494802 (2024).
131. Shan, H., Tian, G., Zhang, Y., Qiu, Z. Exploring the molecular mechanisms and therapeutic potential of SMAD4 in colorectal cancer. Cancer Biology and Therapy. 25(1), 2392341 (2024).
132. Pizzamiglio, M., Soulabaille, A., Lahlou, W., Pilla, L., Zaanan, A., Taieb, J. Advances and challenges in targeted therapies for HER2-amplified colorectal cancer. European Journal of Cancer. 222, 115471 (2025).
133. Doebele, R. C., Davis, L. E., Vaishnavi, A., Le, A. T., Estrada-Bernal, A., Keysar, S., Jimeno, A., Varella-Garcia, M., Aisner, D. L., Li, Y., Stephens, P. J., Morosini, D., Tuch, B. B., Fernandes, M., Nanda, N., Low, J. A. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discovery. (2015).
134. Cheng, B., Xu, L., Zhang, Y., Yang, H., Liu, S., Ding, S., Zhao, H., Sui, Y., Wang, C., Quan, L., Liu, J., Liu, Y., Wang, H., Zheng, Z., Wu, X., Guo, J., Wen, Z., Zhang, R., Wang, F., Liu, H., Sun, S. Correlation between NGS panel-based mutation results and clinical information in colorectal cancer patients. Heliyon. 10(7), e29299 (2024).
135. Benson, A. B., Venook, A. P., Adam, M., Chang, G., Chen, Y. J., Ciombor, K. K., Cohen, S. A., Cooper, H. S., Deming, D., Garrido-Laguna, I., Grem, J. L., Haste, P., Hecht, J. R., Hoffe, S., Hunt, S., Hussan, H., Johung, K. L., Joseph, N., Kirilcuk, N., Krishnamurthi, S., Malla, M., Maratt, J. K., Messersmith, W. A., Meyerhardt, J., Miller, E. D., Mulcahy, M. F., Nurkin, S., Overman, M. J., Parikh, A., Patel, H., Pedersen, K., Saltz, L., Schneider, C., Shibata, D., Shogan, B., Skibber, J. M., Sofocleous, C. T., Tavakkoli, A., Willett, C. G., Wu, C., Gurski, L. A., Snedeker, J., Jones, F. Colon cancer, version 3.2024, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network. 22(2 D), e240029 (2024).
136. Benson, A. B., Venook, A. P., Adam, M., Chang, G., Chen, Y. J., Ciombor, K. K., Cohen, S. A., Cooper, H. S., Deming, D., Garrido-Laguna, I., Grem, J. L., Haste, P., Hecht, J. R., Hoffe, S., Hunt, S., Hussan, H., Johung, K. L., Joseph, N., Kirilcuk, N., Krishnamurthi, S., Malla, M., Maratt, J. K., Messersmith, W. A., Meyerhardt, J., Miller, E. D., Mulcahy, M. F., Nurkin, S., Parikh, A., Patel, H., Pedersen, K., Saltz, L., Schneider, C., Shibata, D., Shogan, B., Skibber, J. M., Sofocleous, C. T., Tavakkoli, A., Willett, C. G., Wu, C., Jones, F., Gurski, L. NCCN Guidelines® Insights: Rectal Cancer, Version 3.2024. Journal of the National Comprehensive Cancer Network. 22(6), 366-375 (2024).
137. Zheng-Lin, B., Bekaii-Saab, T. S. Treatment options for HER2-expressing colorectal cancer: updates and recent approvals. Therapeutic Advances in Medical Oncology. 16, 17588359231225037 (2024).
138. Koopman, B., Kuijpers, C. C. H. J., Groen, H. J. M., Timens, W., Schuuring, E., Willems, S. M., van Kempen, L. C. Detection of NTRK fusions and TRK expression and performance of pan-TRK immunohistochemistry in routine diagnostics: results from a nationwide community-based cohort. Diagnostics (Basel). 12(3), 668 (2022).
139. Kalimutho, M., Bain, A. L., Mukherjee, B., Nag, P., Nanayakkara, D. M., Harten, S. K., Harris, J. L., Subramanian, G. N., Sinha, D., Shirasawa, S., Srihari, S., Burma, S., Khanna, K. K. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae. Molecular Oncology. 11(5), 470-490 (2017).
140. Ibrahim, Y. H., García-García, C., Serra, V., He, L., Torres-Lockhart, K., Prat, A., Anton, P., Cozar, P., Guzmán, M., Grueso, J., Rodríguez, O., Calvo, M. T., Aura, C., Díez, O., Rubio, I. T., Pérez, J., Rodón, J., Cortés, J., Ellisen, L. W., Scaltriti, M., Baselga, J. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discovery. 2(11), 1036-1047 (2012).
141. Robb, R., Yang, L., Shen, C., Wolfe, A. R., Webb, A., Zhang, X., Vedaie, M., Saji, M., Jhiang, S., Ringel, M. D., Williams, T. M. Inhibiting BRAF oncogene-mediated radioresistance effectively radiosensitizes BRAFV600E-mutant thyroid cancer cells by constraining DNA double-strand break repair. Clinical Cancer Research. 25(15), 4749-4760 (2019).
142. Williams, A. B., Schumacher, B. p53 in the DNA-damage-repair process. Cold Spring Harbor Perspectives in Medicine. 6(5), a026070 (2016).