| 研究生: |
曾彥維 Zeng, Yan-Wei |
|---|---|
| 論文名稱: |
危害性化學品分級管理方法之驗證、開發及應用─以塑膠材料印刷業為例 The Evaluation, Exploitation and Application of Chemical Control Banding Methods for Plastic Material Printing Industries |
| 指導教授: |
蔡朋枝
Tsai, Perng-Jy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 化學暴露 、危害性化學品分級管理方法 、模式驗證 、塑膠材料印刷業 |
| 外文關鍵詞: | Chemical exposure, control banding, model evaluation, plastic material printing industry |
| 相關次數: | 點閱:113 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風險評估可概分為定性風險評估(Qualitative Risk Assessment)、半定量風險評估(Semi-quantitative Risk Assessment)與定量風險評估(Quantitative Risk Assessment)三種。其中半定量評估(例如危害性化學品分級管理工具等)因為其簡單即可及性被廣泛的使用。由於危害性化學品分級管理工具為一通用的模式,其精確度和準確度可能有所取捨。國內目前從事印刷及資料儲存媒體複製業約為 7,721家,且多數為中小型企業型態為主。印刷製程中會使用大量有機溶劑,對於勞工構成之健康風險值得關注,然而在進行暴露危害評估上不管是人力或物力都受到諸多限制,因此尋找適用於中小型事業單位的簡易評估勞工暴露情形的方式有其重要性。本研究利用國內14家塑膠材料印刷業暴露濃度及暴露相關研究資料,驗證五種危害性化學品分級管理方法,包含英國健康安全署(HSE)研擬之「危害物質控制須知(COSHH Essentials)」、國際勞工組織(ILO)擬定之「國際化學品控制工具箱(CCTK)」、德國發展之「簡易作業場所危害物質控制技術(EMKG)」、歐盟之「化學性因子指令實務指引(CAD)」與新加坡人力職業衛生局「有害化學品風險評估規範(SQRA)」。利用兩種方法進行分級管理工具之驗證:一為利用實際採樣濃度與分級管理工具之預測暴露濃度範圍進行比較,二為將分級管理工具之結果與暴露指數(EI (exposure index)=實際暴露濃度與容許濃度之比值),進行斯皮爾曼等級相關係數(Spearman’s rank correlation coefficient)分析,以瞭解各評估及分級管理工具之有效性,並進而開發一適用該行業之評估及分級管理工具。結果顯示新加坡人力職業衛生局「有害化學品風險評估規範(SQRA)」最適合塑膠材料印刷業,考量其呈現中度相關(r=0.413, p<0.05),修正後呈現高度相關(r=0.861, p<0.05),建議公式如下:CCB=0.074×(物質危害等級)+0.058×(OT/PEL比率)+0.272×(每星期使用量)+0.727×(每週工作時間)+0.59,以上修正後之方法利用選取之塑膠材料印刷業中五個相似暴露族群暴露資料進行驗證,呈現高度相關(r=0.758, p<0.05),表示其修正後之方法適用於塑膠材料印刷業。最後,利用所建立之危害性化學品分級管理方法建立長期暴露數據庫。透過結合上述資料庫(即事前分析資料)與區域採樣結果(即相似決策分布),利用貝氏決策分析技術本研究得出對研究之相似曝露族群中以離型層塗佈作業之丁酮具有最高之可能性(99.8%)落在ER4(即>1 PEL-TWA)。上述結果顯示其暴露風險高於容許濃度,建議採取措施以減少未來勞工之風險。
This study utilizes the exposure information of 14 domestic plastic material printing industries to validate five CCB methods, including the HSE COSHH Essentials, ILO International Chemical Control Toolkit, BAuA EMKG, EU Practical guidelines: Chemical agents directive (CAD) and Singapore Semi-Quantitative Risk Assessment (SQRA). There are two ways to evaluate five CCB methods, one is using the sampling data compared with the predicted range. The other is using Spearman’s rank correlation coefficient to analysis the correlation between the results of CCB methods and EI (exposure index, the ratio of exposure concentrations to the permissible exposure level (PEL)), to assess the validity of the above mentioned control banding methods. Results show that the SORA method is most suitable one for printing industries. Considering its moderate correlation (r=0.413, p<0.05), a modified CCB with high correlation (r=0.861, p<0.05) is proposed as following: CCB=0.074 x (Hazardous rating) + 0.0.058 x (OT/PEL ratio) + 0.272 x (Using amount rating) + 0.727 x (Working time per week). The above CCB is validated by data obtained from one printing industry with five similar exposure groups (SEGs). A high correlation is yielded (r=0. 758, p<0.05) which suggest the suitability of the proposed CCB. By combining the above data bank (i.e., the prior distribution) which established by the proposed CCB with the environmental sampling results (i.e., the likelihood distribution), through the use of the Bayesian decision analysis, this study yields the long-term exposures that the coating task of release layer of all studied SEGS have the highest possibilities (99.8 %) falling to ER4 (i.e., >1 PEL-TWA).
BAuA. (2014). EMKG (Easy-to-use workplace control scheme for hazardous substances).
Bulbulyan, M. I., SA; Zahm, SH; Astashevsky, SV; Zaridze, DG. (1999). Cancer mortality among women in the Russian printing industry. AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, 36, 166-171.
Burstyn, I., Kromhout, H., Kauppinen, T., Heikkila, P., & Boffetta, P. (2000). Statistical modelling of the determinants of historical exposure to bitumen and polycyclic aromatic hydrocarbons among paving workers. Ann Occup Hyg, 44(1), 43-56.
Connaughton, V. (1995). Glutamate and Glutamate Receptors in the Vertebrate Retina. In H. Kolb, E. Fernandez & R. Nelson (Eds.), Webvision: The Organization of the Retina and Visual System. Salt Lake City (UT).
Haruo Hashimoto, T. G., Nobutoyo Nakachi, Hidetaka Suzuki, Toru Takebayashi, Shigeyuki Kajiki, Koji Mori. (2007). Evaluation of the control banding method - Comparison with measurement-based comprehensive risk assessment. Journal of Occupational Health, 49, 482-492.
He, Y., Liang, Y., & Fu, H. (2009). Application of bayesian methods to exposure assessment of area concentrations at a rubber factory. Int J Environ Res Public Health, 6(2), 622-634. doi: 10.3390/ijerph6020622
HSE. (1999). COSHH ESSENTIALS-Easy steps to control chemicals. HSE.
Jones, R. M., & Nicas, M. (2006). Evaluation of COSHH Essentials for vapor degreasing and bag filling operations. Ann Occup Hyg, 50(2), 137-147. doi: 10.1093/annhyg/mei053
Kiurski, J. S., Marić, B. B., Aksentijević, S. M., Oros, I. B., Kecić, V. S., & Kovacˇević, I. M. (2013). Indoor air quality investigation from screen printing industry. Renewable and Sustainable Energy Reviews, 28, 224-231. doi: 10.1016/j.rser.2013.07.039
Kromhout, H. (2002). Design of measurement strategies for workplace exposures. Occup Environ Med, 59, 349-354.
Manpower, M. o. (2003). A Semiquantitative Method to Assess Occupational Exposure to Harmful Chemicals. Ministry of Manpower.
Ng, T. P., Ong, S. G., Lam, W. K., & Jones, G. M. (1990). Neurobehavioural effects of industrial mixed solvent exposure in Chinese printing and paint workers. Neurotoxicol Teratol, 12(6), 661-664.
NIOSH. (2009). Qualitative Risk Characterization and Management of Occupational Hazards: Control Banding (CB). NIOSH.
Russell, R. M., SC; Brooke, I; Topping, MD. (1998). An introduction to a UK scheme to help small firms control health risks from chemicals. Annals of Occupational Hygiene, 42, 367-376.
Symanski, E., Kupper, L. L., Hertz-Picciotto, I., & Rappaport, S. M. (1998). Comprehensive evaluation of long-term trends in occupational exposure: Part 2. Predictive models for declining exposures. Occup Environ Med, 55(5), 310-316.
Symanski, E., Kupper, L. L., & Rappaport, S. M. (1998). Comprehensive evaluation of long-term trends in occupational exposure: Part 1. Description of the database. Occup Environ Med, 55(5), 300-309.
Tischer, M. (2003). Evaluation of the HSE COSHH Essentials Exposure Predictive Model on the Basis of BAuA Field Studies and Existing Substances Exposure Data. Annals of Occupational Hygiene, 47(7), 557-569. doi: 10.1093/annhyg/meg086
Topping, M. (2002). Design of measurement strategies for workplace exposures. Occup Environ Med, 59(11), 788; author reply 788-789.
Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203(3-4), 312-318. doi: 10.1016/j.ecolmodel.2006.11.033
van Tongeren, M. J., Kromhout, H., & Gardiner, K. (2000). Trends in levels of inhalable dust exposure, exceedance and overexposure in the European carbon black manufacturing industry. Ann Occup Hyg, 44(4), 271-280.
Vermeulen, R., de Hartog, J., Swuste, P., & Kromhout, H. (2000). Trends in exposure to inhalable particulate and dermal contamination in the rubber manufacturing industry: effectiveness of control measures implemented over a nine-year period. Ann Occup Hyg, 44(5), 343-354.
Vlaanderen, J., Straif, K., Martinsen, J. I., Kauppinen, T., Pukkala, E., Sparen, P., . . . Kjaerheim, K. (2013). Cholangiocarcinoma among workers in the printing industry: using the NOCCA database to elucidate the generalisability of a cluster report from Japan. Occup Environ Med, 70(12), 828-830. doi: 10.1136/oemed-2013-101500
Wang, S. M., Wu, T. N., Juang, Y. J., Dai, Y. T., Tsai, P. J., & Chen, C. Y. (2013). Developing a semi-quantitative occupational risk prediction model for chemical exposures and its application to a national chemical exposure databank. Int J Environ Res Public Health, 10(8), 3157-3171. doi: 10.3390/ijerph10083157
行政院主計處 (2011) 100年工商及服務業普查報告 (Vol. 3).
周瑞淑 (2012) 油墨業混存溶劑採樣分析方法建立和勞工暴露危害調查. 勞工安全衛生研究所.
陳俊六 (2013) 塑膠材料印刷作業勞工多成分有機溶劑暴露相關性研究.
楊啟賢 (2014) 印刷業作業環境有機溶劑使用及其勞工健康狀況調查. 勞動部勞動及職業安全衛生研究所.
經濟部工業局 (2013) 工業發展年鑑.