簡易檢索 / 詳目顯示

研究生: 方奕勳
Fang, Yi-Syun
論文名稱: 開發光輔助合成高靈敏 SERS 基板應用於細菌檢測
Photo-assisted synthesis of high sensitive SERS substrate for bacterial detection
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 82
中文關鍵詞: 柔性基板表面增強拉曼散射光還原熱對流金奈米顆粒
外文關鍵詞: flexible substrate, surface-enhanced Raman scattering, photo-reduction, thermal convection, Au nanoparticle
相關次數: 點閱:119下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,無標記表面增強拉曼散射 (SERS) 已逐漸成為透過快速且高靈敏地檢測特定生物分子來解答有趣的生物學問題的新一代分析方法之一,但仍缺乏可靠的檢測和卓越的選擇性來接近生物傳感器平台的實際應用。SERS 技術在生物分析中的應用涉及等離子體奈米材料與生物系統及其環境的複雜相互作用。在此,我們展示了一種通過原位還原沉積和生長過程製造 SERS 基板的新型綠色和簡單方法。高密度的 Au 奈米粒子可以產生更顯著的 SPR 效應,它們對多種分子(包括嘌呤和染料)的物理和化學吸附具有強烈的 SERS 增強作用。最後,我們成功地檢測了細菌的代謝物(6小時內 100-102 CFU/mL),並有效區分細菌有無抗生素耐藥性。我們的光刺激還原反應證明了快速、簡單且有效的化學操作,可用於隨後增加 Au 奈米顆粒的密度和減小尺寸。成功地利用綠光刺激螯合物進行電子轉移,有效地增加了 Au 奈米粒子的產出,所展示的 SERS 能力可能成為未來設計新型生物分子類 SERS 基底的有力途徑。

    In recent years, label-free Surface-enhanced Raman scattering (SERS) has gradually become one of the new generation analytical methods for answering interesting biological questions by rapid and sensitive detection of specific biomolecules but lacks reliable and exceptional selectivity detection methods to approach the practical applications in biosensing. SERS applications in bioanalysis involve complex interactions of plasmonic nanomaterials with biological systems and their environments. Herein, we illustrate a novel green and simple approach to fabricate SERS substrate through an in-situ gold (Au) reduction-based deposition and growth process. Our photo-stimulated reduction reaction can be used to increase the density of Au nanoparticles via a fast, simple, and efficient chemical operation. We succeed in using the green light source to simulate the electron transfer process, which is to increase the output in production in gold nanoparticles effectively. High-density Au nanoparticles produce any use to capture two items substantial SPR effect to SERS enhance diverse molecules that physically and chemical adsorbed molecules, including purines and dyes. We successfully detected a low concentration of metabolite-bacteria (100-102 CFU/mL) within 6 hrs. Our approach can also use to distinguish with/without antibiotic resistance. We demonstrated that SERS could potentially become an influential technique to detect biomolecules in the near future.

    摘要 II Abstract III 致謝 V Contents VI Figure Contents IX Table Contents XV 1. Introduction 1 1.1 Surface-enhanced Raman scattering 1 1.1.1 Raman scattering effect 1 1.1.2 Introducing surface-enhanced Raman scattering 2 1.1.3 Electromagnetic mechanism (EM) 2 1.1.4 Chemical Effect (CM) 3 1.1.5 Application of SERS 4 1.2 Introduction of SERS substrates 5 1.2.1 Solid SERS substrates 5 1.2.2 Flexible SERS substrates2 5 1.2.3 Tannic acid 6 1.2.4 Improved SERS effect from roughness surface 7 1.3 Photo-effect 7 1.3.1 Photochemical synthesis 7 1.3.2 Optical effect 9 2. Motivation 21 3. Method and Materials 24 3.1 Materials 24 3.2 Equipment 25 3.3 Synthesis methods of SERS substrates 26 3.3.1 Synthesis of the Au3(Light) SERS Substrate 26 3.3.2 SERS measurement 27 3.3.3 Bacterial sample preparation 27 3.3.4 Bacterial metabolisms generate process 27 3.3.5 Bacteria mixed with antibiotic 28 3.3.6 Standard plate colony counting 29 3.3.7 Characterization 29 4. Results and discussion 32 4.1 Characterization of the Au3(Light)-SERS substrate 32 4.2 Explore the mechanism of radiation process 34 4.2.1 Thermal convection-Marangoni flows 34 4.2.2 Photo-stimulation chelated 35 4.2.3 Selection of irradiation laser wavelength 36 4.2.4 Reduced the background fluorescence 37 4.2.5 Controlling irradiation of time 38 4.2.6 Controlling irradiation of power 39 4.3 SERS detection for environmental analyses 40 4.4 Detection of bacteria by SERS 42 5. Conclusion 69 6. Reference 71

    1. A. Smekal, Naturwiss, 1923, 11, 873–875.
    2. C. V. Raman and K. S. Krishnan, Nature, 1928, 121, 501–502.
    3. Handbook of Instrumental Techniques for Analytical Chemistry. Journal of Liquid Chromatography & Related Technologies 1998, 21 (19), 3072-3076.
    4. R. Petry, M. Schmitt, and J. Popp, ChemPhysChem, 2003, 4, 14–30.
    5. M. S. Shamsudin and S. M. Sanip, Adv. Mat. Res., 2015, 1109, 509–513.
    6. N. Kim, M. R. Thomas, M. S. Bergholt, I. J. Pence, H. Seong, P. Charchar, N. Todorova, A. Nagelkerke, A. Belessiotis-Richards, D. J. Payne, A. Gelmi, I. Yarovsky, and M. M. Stevens, Nat. Commun., 2020, 11, 207.
    7. N. Kim, M. R. Thomas, M. S. Bergholt, I. J. Pence, H. Seong, P. Charchar, N. Todorova, A. Nagelkerke, A. Belessiotis-Richards, D. J. Payne, A. Gelmi, I. Yarovsky and M. M. Stevens, Nat Commun, 2020, 11, 207.
    8. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett., 1974, 26, 163–166.
    9. D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem., 1977, 84, 1−20.
    10. M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc., 1977, 99, 5215−5217.
    11. M. R. Philpott, J. Chem. Phys., 1975, 62, 1812
    12. M. Moskovits, J. Chem. Phys., 1978, 69, 4159.
    13. A search in Web of Science, as “TOPIC: (surface enhanced raman scattering) OR TOPIC: (SERS)” yields over 100000 records as of June 2021.
    14. Y. Zhang, S. Zhao, J. Zheng and L. He, TrAC Trends in Analytical Chemistry, 2017, 90, 1-13.
    15. J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguie, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J. Garcia de Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Kall, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H. K. Lee, J. F. Li, X. Y. Ling, S. A. Maier, T. Mayerhofer, M. Moskovits, K. Murakoshi, J. M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G. C. Schatz, T. Shegai, S. Schlucker, L. L. Tay, K. G. Thomas, Z. Q. Tian, R. P. Van Duyne, T. Vo-Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto, B. Zhao and L. M. Liz-Marzan, ACS Nano, 2020, 14, 28-117.
    16. S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, J. Am. Chem. Soc., 2008, 130, 15589–15601.
    17. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, Journal, 2003.
    18. E. C. Le Ru, E. Blackie, M. Meyer and P. G. Etchegoin, The Journal of Physical Chemistry C, 2007, 111, 13794-13803.
    19. M. Li, S. K. Cushing and N. Wu, Analyst, 2015, 140, 386-406.
    20. J. Prakash, H. C. Swart, G. Zhang, and S. Sun, J. Mater. Chem. C, 2019, 7, 1447–1471.
    21. J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz and R. P. Van Duyne, Journal of the American Chemical Society, 2008, 1130, 12616-12617.
    22. K. Li, M. I. Stockman and D. J. Bergman, Phys Rev Lett, 2003, 91, 227402.
    23. D. M. Solis, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzan and F. J. Garcia de Abajo, ACS Photonics, 2017, 4, 329-337.
    24. D. Grasseschi and H. E. Toma, Coordination Chemistry Reviews, 2017, 333, 108-131.
    25. R. L. M. Gieseking, J. Lee, N. Tallarida, V. A. Apkarian and G. C. Schatz, J Phys Chem Lett, 2018, 9, 3074-3080.
    26. X. Zheng, Z. Guo, G. Zhang, H. Li, J. Zhang and Q. Xu, Journal of Materials Chemistry A, 2019, 7, 19922-19928.
    27. S. Hong and X. Li, Journal of Nanomaterials, 2013, 2013, 1-9.
    28. W. Wei, Y. Wang, J. Ji, S. Zuo, W. Li, F. Bai and H. Fan, Nano Lett, 2018, 18, 4467-4472.
    29. W. Yu, Y. Huang, L. Pei, Y. Fan, X. Wang and K. Lai, Journal of Nanomaterials, 2014, 2014, 1-8.
    30. M. Park, H. Jung, Y. Jeong and K. H. Jeong, ACS Nano, 2017, 11, 438-443.
    31. L. F. Tadesse, C. S. Ho, D. H. Chen, H. Arami, N. Banaei, S. S. Gambhir, S. S. Jeffrey, A. A. E. Saleh and J. Dionne, Nano Lett, 2020, 20, 7655-7661.
    32. L. Li, J. Jin, J. Liu, J. Yang, W. Song, B. Yang and B. Zhao, Nanoscale, 2021, 13, 1006-1015.
    33. T. Touzalin, S. Joiret, E. Maisonhaute and I. T. Lucas, Anal Chem, 2017, 89, 8974-8980.
    34. K. Wang, D. W. Sun, H. Pu, Q. Wei and L. Huang, ACS Appl Mater Interfaces, 2019, 11, 29177-29186.
    35. Z. Wang, W. Wang, S. Liu, N. Yang and G. Zhao, Electrochemistry Communications, 2021, 124.
    36. S. Mourdikoudis, V. Montes-Garcia, S. Rodal-Cedeira, N. Winckelmans, I. Perez-Juste, H. Wu, S. Bals, J. Perez-Juste and I. Pastoriza-Santos, Dalton Trans, 2019, 48, 3758-3767.
    37. J. Plou, I. García, M. Charconnet, I. Astobiza, C. García‐Astrain, C. Matricardi, A. Mihi, A. Carracedo and L. M. Liz‐Marzán, Advanced Functional Materials, 2020, 30.
    38. S. Chang, S. L. Eichmann, T.-Y. S. Huang, W. Yun and W. Wang, The Journal of Physical Chemistry C, 2017, 121, 8070-8076.
    39. Y.-T. Chuang, T.-Y. Cheng, T.-L. Kao and M.-Y. Liao, ACS Applied Nano Materials, 2020, 3, 7888-7898.
    40. J. Yu, C. H. Hsu, C. C. Huang and P. Y. Chang, ACS Appl Mater Interfaces, 2015, 7, 432-441.
    41. J. F. Betz, W. W. Yu, Y. Cheng, I. M. White and G. W. Rubloff, Phys Chem Chem Phys, 2014, 16, 2224-2239.
    42. J. Deng, J. Dong and P. Cohen, Procedia Manufacturing, 2018, 26, 580-586
    43. S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si and S. Xu, RSC Advances, 2017, 7, 5764-5773.L. Petti, R. Capasso, M. Rippa, M. Pannico, P. La Manna, G. Peluso, A. Calarco, E. Bobeico and P. Musto, Vibrational Spectroscopy, 2016, 82, 22-30.
    44. L. Petti, R. Capasso, M. Rippa, M. Pannico, P. La Manna, G. Peluso, A. Calarco, E. Bobeico and P. Musto, Vibrational Spectroscopy, 2016, 82, 22-30.
    45. A. Kundu, R. Rani and K. S. Hazra, Nanoscale, 2019, 11, 16245-16252.
    46. V. Suresh, L. Ding, A. B. Chew and F. L. Yap, ACS Applied Nano Materials, 2018, 1, 886-893.
    47. K. Sivashanmugan, J. D. Liao, B. H. Liu and C. K. Yao, Anal Chim Acta, 2013, 800, 56-64.
    48. M. Sakamoto, M. Fujistuka and T. Majima, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 33-56.
    49. C.-W. Lee, H. Ko, S.-H. G. Chang and C.-C. Huang, Green Chemistry, 2018, 20, 5318-5326.
    50. C. Zong, M. Ge, H. Pan, J. Wang, X. Nie, Q. Zhang, W. Zhao, X. Liu and Y. Yu, RSC Advances, 2019, 9, 2857-2864.
    51. C. H. Lee, L. Tian and S. Singamaneni, ACS Appl Mater Interfaces, 2010, 2, 3429-3435.
    52. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci and H. Altug, Adv Mater, 2011, 23, 4422-4430.
    53. R. H. Lahr, G. C. Wallace and P. J. Vikesland, ACS Appl Mater Interfaces, 2015, 7, 9139-9146.
    54. A. Kumar and V. Santhanam, Anal Chim Acta, 2019, 1090, 106-113.
    55. P. Wu, L. B. Zhong, Q. Liu, X. Zhou and Y. M. Zheng, Nanoscale, 2019, 11, 12829-12836.
    56. Y. Chen, F. Ge, S. Guang and Z. Cai, Applied Surface Science, 2018, 436, 111-116.
    57. Jiang J., Zou S., Li Y., Zhao F., Chen J., Wang S., Wu H., Xu J., Chu M., Liao J., et al. Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Microchim. Acta. 2019;186:603.
    58. Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma and X. Yan, Applied Surface Science, 2018, 436, 391-397.
    59. D. Das, S. Senapati and K. K. Nanda, ACS Sustainable Chemistry & Engineering, 2019, 7, 14089-14101.
    60. D. Zhang, H. Pu, L. Huang and D.-W. Sun, Trends in Food Science & Technology, 2021, 109, 690-701.
    61. G. Zheng, L. Polavarapu, L. M. Liz-Marzan, I. Pastoriza-Santos and J. Perez-Juste, Chem Commun (Camb), 2015, 51, 4572-4575.
    62. W. W. Yu and I. M. White, Anal. Chem., 2010, 82, 9626–9630.
    63. R. Pelton, Trends Anal. Chem., 2009, 28, 925–942
    64. H. Ejima, J. J. Richardson and F. Caruso, Nano Today, 2017, 12, 136-148.
    65. D. G. Barrett, T. S. Sileika and P. B. Messersmith, Chem Commun (Camb), 2014, 50, 7265-7268.
    66. S. Geissler, A. Barrantes, P. Tengvall, P. B. Messersmith and H. Tiainen, Langmuir, 2016, 32, 8050-8060.
    67. H. Di, L. Qiaoxia, Z. Yujie, L. Jingxuan, W. Yan, H. Yinchun, L. Xiaojie, C. Song and C. Weiyi, Surface and Coatings Technology, 2020, 399.
    68. V. D’Elia, J. Rubio-Retama, F. E. Ortega-Ojeda, C. García-Ruiz and G. Montalvo, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 43-50.
    69. C. H. Zhang, J. Zhu, J. J. Li and J. W. Zhao, ACS Appl Mater Interfaces, 2017, 9, 17387-17398.
    70. Y. Qin, Y. Wu, B. Wang, J. Wang, X. Zong and W. Yao, RSC Advances, 2021, 11, 19813-19818.
    71. T. D. Vu, P. K. Duy and H. Chung, Sensors and Actuators B: Chemical, 2019, 282, 535-540.
    72. S. Wijesuriya, K. Burugapalli, R. Mackay, G. C. Ajaezi and W. Balachandran, Sensors (Basel), 2016, 16.
    73. C.-Y. Huang and C.-H. Chien, Applied Sciences, 2019, 9.
    74. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. Zheng, Science, 2001, 294, 1901-1903.
    75. M. Sakamoto, M. Fujistuka and T. Majima, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 33-56.
    76. G. S. Métraux and C. A. Mirkin, Advanced Materials, 2005, 17, 412-415.
    77. M. A. El-Sayed, Accounts of chemical research, 2001, 34, 257-264.
    78. P. V. Kamat, The Journal of Physical Chemistry B, 2002, 106, 7729-7744.
    79. S. Toyouchi, M. Wolf, Y. Nakao, Y. Fujita, T. Inose, B. Fortuni, K. Hirai, J. Hofkens, S. De Feyter, J. Hutchison and I. H. Uji, Nano Lett, 2020, 20, 2460-2467.
    80. H. Hada, Y. Yonezawa, A. Yoshida and A. Kurakake, The Journal of Physical Chemistry, 1976, 80, 2728-2731.
    81. S. Eustis, H.-Y. Hsu and M. A. El-Sayed, The Journal of Physical Chemistry B
    2005, 109, 4811-4815.
    82. M. Sakamoto, T. Tachikawa, M. Fujitsuka and T. Majima, Chemical Physics Letters, 2006, 420, 90-94.
    83. H. S. Siebe, Q. Chen, X. Li, Y. Xu, W. R. Browne and S. E. J. Bell, Analyst, 2021, 146, 1281-1288.
    84. S. Wang and T. Ding, ACS Nano, 2019, 13, 32-37.
    85. R. Sato-Berrú, R. Redón, A. Vázquez-Olmos and J. M. Saniger, Journal of Raman Spectroscopy, 2009, 40, 376-380.
    86. J. Zhang, M. R. Langille and C. A. Mirkin, Nano Lett, 2011, 11, 2495-2498.
    87. G. P. Lee, Y. Shi, E. Lavoie, T. Daeneke, P. Reineck, U. B. Cappel, D. M. Huang and U. Bach, ACS nano, 2013, 7, 5911-5921.
    88. J. Cao, T. Sun and K. T. V. Grattan, Sensors and Actuators B: Chemical, 2014, 195, 332-351.
    89. V. D. Ta, R. M. Carter, E. Esenturk, C. Connaughton, T. J. Wasley, J. Li, R. W. Kay, J. Stringer, P. J. Smith and J. D. Shephard, Soft Matter, 2016, 12, 4530-4536.
    90. T. M. Yen, X. Fu, T. Wei, R. U. Nayak, Y. Shi and Y. H. Lo, Sci Rep, 2018, 8, 3157.
    91. F. Rice and K. Herzfeld, Journal of the American Chemical Society, 1967, 56, 284–289.
    92. L. Li, J. Jin, J. Liu, J. Yang, W. Song, B. Yang and B. Zhao, Nanoscale, 2021, 13, 1006-1015.
    93. K. Kim, J. Park, H. Kim, G. Y. Jung and M.-G. Kim, ACS Catalysis, 2019, 9, 9206-9211.
    94. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin and Y. Xia, Chem Rev, 2011, 111, 3669-3712.
    95. L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng and F. H. Luo, Anal Chem, 2014, 86, 6262-6267.
    96. J. Kim, K. R. Kim, Y. Hong, S. Choi, C. T. Yavuz, J. W. Kim and Y. S. Nam, ACS Appl Mater Interfaces, 2019, 11, 21915-21925.
    97. G. Chen, Y. Yang, Q. Xu, M. Ling, H. Lin, W. Ma, R. Sun, Y. Xu, X. Liu, N. Li, Z. Yu and M. Yu, Nano Lett, 2020, 20, 8141-8150.
    98. D. Radziuk and H. Moehwald, Nanoscale, 2014, 6, 6115-6126.
    99. X. Liu, L. Zhao, H. Shen, H. Xu and L. Lu, Talanta, 2011, 83, 1023-1029.
    100. E. Hao and G. C. Schatz, J Chem Phys, 2004, 120, 357-366. 2, 3
    101. W. R. Premasiri, J. C. Lee, A. Sauer-Budge, R. Theberge, C. E. Costello and L. D. Ziegler, Anal Bioanal Chem, 2016, 408, 4631-4647.
    102. K. Shimizu, Metabolites, 2013, 4, 1-35.
    103. M. Gatchell, M. Goulart, L. Kranabetter, M. Kuhn, P. Martini, B. Rasul and P. Scheier, Phys Chem Chem Phys, 2018, 20, 7739-7745.
    104. D. D. Galvan and Q. Yu, Adv Healthc Mater, 2018, 7, e1701335.
    105. H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner and C. Haisch, Anal Chem, 2014, 86, 1525-1533.
    106. T. J. Ondera and A. T. Hamme, 2nd, J Mater Chem B, 2014, 2, 7534-7543.
    107. S. Jones, A. Pramanik, R. Kanchanapally, B. P. Viraka Nellore, S. Begum, C. Sweet and P. C. Ray, ACS Sustainable Chemistry & Engineering, 2017, 5, 7175-7187.
    108. H. Y. Lin, C. H. Huang, W. H. Hsieh, L. H. Liu, Y. C. Lin, C. C. Chu, S. T. Wang, I. T. Kuo, L. K. Chau and C. Y. Yang, Small, 2014, 10, 4700-4710.
    109. H. Zhang, X. Ma, Y. Liu, N. Duan, S. Wu, Z. Wang and B. Xu, Biosens Bioelectron, 2015, 74, 872-877.
    110. C. Catala, B. Mir‐Simon, X. Feng, C. Cardozo, N. Pazos‐Perez, E. Pazos, S. Gómez‐de Pedro, L. Guerrini, A. Soriano, J. Vila, F. Marco, E. Garcia‐Rico and R. A. Alvarez‐Puebla, Advanced Materials Technologies, 2016, 1.
    111. L. Qiu, W. Wang, A. Zhang, N. Zhang, T. Lemma, H. Ge, J. J. Toppari, V. P. Hytonen and J. Wang, ACS Appl Mater Interfaces, 2016, 8, 24394-24403.
    112. L. Qiu, W. Wang, A. Zhang, N. Zhang, T. Lemma, H. Ge, J. J. Toppari, V. P. Hytonen and J. Wang, ACS Appl Mater Interfaces, 2016, 8, 24394-24403.
    113. C. Wang, B. Gu, Q. Liu, Y. Pang, R. Xiao and S. Wang, Int J Nanomedicine, 2018, 13, 1159-1178.
    114. J. Kelly, R. Patrick, S. Patrick and S. E. J. Bell, Angew Chem Int Ed Engl, 2018, 57, 15686-15690.
    115. K. Yuan, Q. Mei, X. Guo, Y. Xu, D. Yang, B. J. Sanchez, B. Sheng, C. Liu, Z. Hu, G. Yu, H. Ma, H. Gao, C. Haisch, R. Niessner, Z. Jiang, Z. Jiang and H. Zhou, Chem Sci, 2018, 9, 8781-8795.
    116. Y. Chao and T. Zhang, Anal Bioanal Chem, 2012, 404, 1465-1475.
    117. N. E. Dina, H. Zhou, A. Colnita, N. Leopold, T. Szoke-Nagy, C. Coman and C. Haisch, Analyst, 2017, 142, 1782-1789.
    118. S. Sil, R. Mukherjee, N. S. Kumar, A. S, J. Kingston and U. K. Singh, Defence Life Science Journal, 2017, 2.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE