簡易檢索 / 詳目顯示

研究生: 潘健源
Pan, Jian-Yuan
論文名稱: 鹽基度對轉爐石碳熱還原脫磷之影響
Effect of Basicity on Phosphorus Separation from Basic Oxygen Furnace Slag by Carbothermic Reduction
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 碳熱還原反應轉爐石脫磷鹽基度
外文關鍵詞: carbothermic reduction, BOF slag, phosphorus separation, basicity
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的轉爐煉鋼製程中一年約產生160萬噸轉爐石,為了多元資源化,需要有合適的廠內資源化方法。轉爐石中含有CaO、FeO和SiO2等成份,可作為一貫作業煉鋼製程中燒結廠之添加料,但其中含有P2O5。若直接使用,將會發生回收後鐵水磷含量過高的問題,因此對轉爐石進行脫磷是必要的。再者,磷為重要的戰略物資,在農業與工業方面有廣泛的應用,而台灣為天然資源匱乏的國家,磷的來源依賴進口,若可藉由轉爐石脫磷製程中回收並萃取其中的磷元素,成為磷元素的新來源,將使轉爐石回收之經濟效益最大化,解決轉爐石去化的問題。
    為了使整體氧化還原反應在液相中有比固相良好的反應效率,因此將轉爐石加熱至熔融為再利用過程中的重點。然而從相圖中之成分評估,原始轉爐石之熔點通常都在1700℃以上,若是直接加熱至熔融,將不利於能源的消耗,因此藉由改質降低轉爐石之熔融溫度將是加快脫磷反應與節能之方向。
    本研究之上半部分遂以不同比例SiO2對爐石進行改質,得到不同鹽基度(B2)之改質轉爐石後,再進行B2對軟熔溫度改變之影響。結果顯示使用SiO2對轉爐石改質時,改質前後的軟熔溫度皆遠低於由三元相圖預估之熔點,並小於1500℃。而改質為B2=1.2時,可將流動溫度降至1300 ℃,為研究樣品中能兼顧低熔點與較少添加劑者。
    本研究之下半部分則是利用不同B2的改質轉爐石與石墨混合,在高溫進行碳熱還原實驗,並透過後續之SEM/EDS分析與ICP分析分別獲得鐵相脫磷率、磁選後之感磁相磷分配率、氣相磷分配率,以評估反應溫度、B2、(C/Ored)mol等參數對於脫磷率之影響。從反應溫度分析,不論任何B2值轉爐石中之氧化鐵在1050~1100℃皆開始大量還原,然而氧化磷被還原的溫度會隨著B2增加而提升。從B2分析,B2在2以下可間接計算磷藉由氣體逸散,B2=1.5能藉由ICP分析得到最高約90%之脫磷率,B2=1.2樣品則是能以磁選分離之手法得到最接近EDS分析之鐵相脫磷率,且其感磁相之成分為鐵、磷以外雜質最少者,具有成為添加料之潛力。從C/O分析可知只要提升至C/O=2就能顯著提升感磁相脫磷率。
    最後以B2=1.2樣品為例模擬實際製程之物質流,在內含之所有磷中,經碳熱還原反應後約有23%磷藉由氣相逸散。然而蒐集磷氣之方式仍需進一步研究。

    There are CaO, FeOn, and SiO2 included in basic oxygen furnace (BOF) slag, which can be applied to the additives of sintering process. However, if BOF slag is recycled in this way without phosphorus elimination, there will be excess phosphorus in the molten iron after blast furnace process. On the other hand, BOF slag can be a promising resource of phosphorus if phosphorus is separated from BOF slag appropriately.
    In order to increase the reaction speed of carbothermic reduction, the process should be in the liquid phase instead of solid phase. However, melting unmodified BOF slag is an energy-consuming way to get a liquid reaction, so modifying BOF slag to decrease the melting temperature is the appropriate way to increase the reaction speed and decrease the energy-consumption.
    In this study, we investigated the softening and melting behavior of BOF slag at first. SiO2 is added to modify the basicity (wt%CaO/wt%SiO2 ,B2) of BOF slag, and monitored the softening and melting temperatures of each samples. The results show whether the slag was modified or not, the flow temperatures of all samples are lower than 1500 ℃. Also, the B2=1.2 modified slag has the flow temperature that is lower than 1300 ℃.
    Then, different modified slags were mixed with graphite and conducted carbothermic reduction. Samples after experiments were analyzed by titration of iron element, SEM/EDS and ICP to get the metallization ratio of iron, phosphorus distribution ratio of iron phase, gaseous phase, and magnetic phase to discuss the effect of reaction temperature, B2, and C/O ratio. In the view of reaction temperature, FeO in all samples can be mostly reduced at 1000-1200 ℃, however the reduced temperature of P2O5 is increased with increasing basicity. In the view of B2, the phosphorus distribution in gaseous phase can be calculated if the B2 of modified slag is lower than 2. If the B2 of the slag is 1.2, the phosphorus distribution of magnetic phase is the nearest to that of ideal iron phase among all samples, also, the magnetic phase has the least impurities among all samples. In the view of C/O ratio, the phosphorus distribution of magnetic phase is increased with increasing C/O ratio.

    摘要 I 誌謝 VII 目錄 VIII 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究內容與目的 1 第二章 文獻回顧 3 2.1 轉爐石 3 2.2 轉爐石改質與熔點變化之評估 4 2.3 轉爐石碳熱還原脫磷理論基礎 4 2.3.1 鐵氧化物之碳熱還原反應 4 2.3.2 氧化磷之脫除與碳熱還原反應 6 2.4 轉爐石碳熱還原脫磷相關文獻 7 第三章 實驗方法 12 3.1 實驗原料與前處理 12 3.2 實驗與分析方法 12 3.2.1 軟熔觀察實驗 13 3.2.2 碳熱還原實驗 14 3.2.3 轉爐石之相分析 15 3.2.4 鐵元素金屬化率分析 15 3.2.5 感應耦合電漿質譜分析儀(ICP-MS)元素分析 16 3.2.6 掃描式電子顯微鏡觀察 18 第四章 實驗結果與討論 23 4.1 轉爐石之結晶相分析 23 4.2 轉爐石軟熔溫度實驗 36 4.2.1 B2對轉爐石軟熔溫度之影響 36 4.2.2 Fe2O3添加對轉爐石軟熔溫度之影響 38 4.3 轉爐石碳熱還原實驗 40 4.3.1 反應溫度對轉爐石碳熱還原之影響 40 4.3.1.1 樣品隨不同反應溫度之重量損失 41 4.3.1.2 樣品隨不同反應溫度之金屬化率 42 4.3.1.3 樣品隨反應溫度變化之形貌 43 4.3.1.4 SEM/EDS分析脫磷情形 56 4.3.1.5 討論改變溫度對還原的影響 56 4.3.2 B2對轉爐石碳熱還原之影響 58 4.3.2.1 樣品隨不同B2變化之重量損失 58 4.3.2.2 樣品隨不同B2變化之金屬化率 60 4.3.2.3 EDS分析鐵相脫磷情形 60 4.3.2.4 ICP分析感磁相脫磷情形 68 4.3.2.5 以脫磷比例比較磁選之分離程度 69 4.3.3 C/O對轉爐石碳熱還原之影響 70 4.3.3.1 樣品隨不同C/O之重量損失 70 4.3.3.2 EDS分析鐵相脫磷情形 71 4.3.3.3 ICP分析感磁相脫磷情形 73 4.3.3.4 以脫磷率比較磁選之分離程度 74 4.3.3.5 掛線上結晶與氣相脫磷評估探討 74 4.3.4 反應時間對轉爐石碳熱還原之影響 75 4.3.5 模擬製程物質流與氣相分析 78 第五章 結論 80 附錄 82 A 轉爐石樣品軟熔溫度試驗之結果 82 B 轉爐石樣品碳熱還原後之鐵元素金屬化率分析 84 C 轉爐石樣品碳熱還原後之ICP元素分析 86 參考文獻 87

    [1] 中鋼公司108年經營報告, 2020.
    [2] 李育成, 楊金成, 蔡立文, 俞明塗, “轉爐渣改質技術在中鋼之應用與突破”, 礦冶, 2014, vol. 58, p. 23-32.
    [3] I. Z. Yildirim and M. Prezzi, “Chemical, Mineralogical, and Morphological Properties of Steel Slag”, Advances in Civil Engineering, 2011, vol. 2011, p. 1-13
    [4] Osborn, E. F. and A. Muan, “CaO-FeOx-SiO2”, Slag Atlas, Verlag Stahleisen GmbH, 1995, p. 126.
    [5] Cavalier, G. and M. Sandreo-Dendon, “Al2O3-CaO-10%MgO-SiO2”, Slag Atlas, Verlag Stahleisen GmbH, 1995, p. 160.
    [6] J. Moon and V. Sahajwalla, “Investigation into the role of the boudouard reaction in self-reducing iron oxide and carbon briquettes”, Metallurgical and Materials Transactions B, 2006, vol. 37, p. 215-221.
    [7] S. M. Jung and S. H. Yi, “A Kinetic Study on Carbothermic Reduction of Hematite with Graphite Employing Thermogravimetry and Quadruple Mass Spectrometry”, steel research international, 2013, vol. 84, p. 908-916.
    [8] R.-f. Wei, D.-q. Cang, L.-l. Zhang, and Y.-y. Bai, “Staged reaction kinetics and characteristics of iron oxide direct reduction by carbon”, International Journal of Minerals, Metallurgy, and Materials, 2015, vol. 22, p. 1025-1032.
    [9] S. M. Jung and S. H. Yi, “Kinetic study on reduction in carbon composite magnetite pellet employing thermogravimetry and quadruple mass spectrometry”, Ironmaking & Steelmaking, 2014, vol. 41, p. 38-46.
    [10] Drews, E.-J. and M. Olette, “CaO-P2O5-SiO2”, Slag Atlas, Verlag Stahleisen GmbH, 1995, p. 138
    [11] T. Miki and S. Kaneko, “Separation of FeO and P2O5 from Steelmaking Slag Utilizing Capillary Action”, ISIJ International, 2015, vol. 55, p. 142-148
    [12] F. W. Dorn, and H. Harnisch, “Zur Reduktion von Calciumphosphat bei der Phosphor-Herstellung”, Chemie Ingenieur Technik, 1970, vol. 42, p. 1209-1215
    [13] S. Shiomi, N. Sano and Y. Matsushita, “Removal of Phosphorus in BOF Slags”, Tetsu to Hagane - J. Iron Steel Inst. Jpn., 1977, vol. 63, p. 1520-1529
    [14] A. Matsui, K. Nakase, N. Kikuchi, Y. Kishimoto, K. Takahashi and K. Ishida, Phosphorus Separation from Steelmaking Slag by High Temperature Reduction with Mechanical Stirring, Tetsu to Hagane - J. Iron Steel Inst. Jpn., 2011, vol. 97, p. 416-422
    [15] K. Nakase, A.Matsui, N. Kikuchi, Y. Miki, “Effect of Slag Composition on Phosphorus Separation from Steelmaking Slag by Reduction”, ISIJ International, 2017, vol. 57, p. 1197-1204.
    [16] Boccaccini A. R. and Hamann B., “Review in Situ High-temperature Optical Microscopy”, Journal of Materials Science, vol. 34, 1999, p. 5419-5436.
    [17] LINSEIS Thermal Analysis, Optical Dilatometer Operating Manual, 2018.
    [18] P. Xue, D. He, A. Xu, Z. Gu, Q. Yang, F. Engström and B. Björkman, “Modification of industrial BOF slag: Formation of MgFe2O4 and recycling of iron”, Journal of Alloys and Compounds, vol. 712, 2017, p. 640-648.
    [19] M. Gautier, J. Poirier, F. Bodénan, G. Franceschini and E. Véron, “Basic oxygen furnace (BOF) slag cooling: Laboratory characteristics and prediction calculations”, International Journal of Mineral Processing, vol. 123, 2013, p. 94-101.
    [20] 莊鑫堅, “固雜料經碳熱還原反應生成直接還原鐵之壓碎強度研究”, 國立成功大學材料科學及工程學系博士論文, 2010.
    [21] D. Kumar and P. C. Pistorius, “Use of slag (CaO-Al2O3-SiO2-MgO) droplet as a catalyst to grow MgO whiskers through VLS mechanism”, Ceramics International, 2017, vol. 43, p. 15478-15485

    下載圖示
    2025-12-24公開
    QR CODE