簡易檢索 / 詳目顯示

研究生: 王建勛
Wang, Chien-Hsun
論文名稱: 熔融無鉛焊錫以壓電噴墨技術製備多次元金屬接合微結構之研究
Fabrication of Multi-Dimensional Metallic Micro-Interconnections with Molten Lead-Free Solder by Piezoelectric Ink-jet Printing Method
指導教授: 黃文星
Hwang, Weng-Sing
共同指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 152
中文關鍵詞: 無鉛銲錫噴墨製程堆疊結構金屬導線電性接合
外文關鍵詞: Lead-free solder, Ink-jet printing process, Pile up, Metallic line, Electrical interconnects
相關次數: 點閱:144下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電噴印技術是一種直接寫的製程技術,由於噴印品質的大幅改善與生產速度的提升,可以應用於電子封裝產業。此技術的優點包括可變的液滴尺寸、定位精度高、快速製造和低生產成本。然而,為了使熔融金屬微液滴能穩定地形成,並且製備精微金屬結構,在高溫下能操作壓電驅動裝置,適當的製程參數調整是必須,因此在實驗方面針對高溫噴墨進行研究,探討噴印條件對三維金屬微結構品質之影響。
    本研究主要採用Sn-3Ag-0.5Cu無鉛銲錫為研究主軸,分別進行點、線、牆、三維結構等基礎研究,目的在不同製程參數條件下,以高速攝影機觀察熔融金屬微液滴撞擊基板後,形成金屬微液滴堆疊結構、微導線過程及在矽薄膜太陽能電池上作為接合銅箔導帶之應用。首先,金屬微液滴堆疊的結構上,則是探討噴印高度與噴印速度的改變對金屬微液滴堆疊形狀影響,並且配合模擬熔融金屬微液滴的撞擊與凝固過程,以多顆液滴沉積堆疊方式觀察液滴的溫度場、凝固場及速度場之情形,最終與實驗進行驗證;接著,就是探討藉由液滴間距、試片溫度與載台移動速度的改變,對金屬微液滴沉積導線結構之影響,在實驗過程中,找出不同試片溫度對金屬液滴沉積線寬、高度與凝固接觸角之結果。此外,藉由試片溫度的改變找出導線牆之緻密噴印品質;最後,則是研究Sn-3Ag-0.5Cu無鉛銲錫的潤濕行為與應用於矽薄膜太陽能電池基板上之鋁電極進行接合,藉由使用壓電噴印的方式將熔融無鉛銲錫進行沉積代替銀膠接合,以改善在矽薄膜太陽能電池鋁電極與銅箔導帶之間的接合強度與轉換效率。
    利用高速攝影機可觀察記錄到金屬微液滴的沉積與堆疊情形,這些條件的無因次參數範圍韋伯(We)數為2.1-15.1與奧內佐格(Oh)數5.4×10-3-3.8×10-3,液滴撞擊後直徑是37-65μm、液滴體積為25-144 pl與液滴撞擊速度為 2.0-3.7 m∙s-1,結果可成功噴印出垂直與傾斜結構的微液柱;在噴印微導線方面,則是固定試片溫度30 °C、液滴間距50 μm及載台移動速度為50 mm∙s-1,可找出金屬微導線結構線寬為55 μm,並且當試片溫度為70 °C,可成功觀察出無孔洞之緻密導線牆結構;在太陽能電池銅箔導帶接合上,找出沉積銲錫液滴間距為200 μm (單位面積銲錫量為50 μg∙mm-2)可優於銀膠的剝離強度,當銲錫液滴間距微縮小為100 μm (單位面積銲錫量為201 μg∙mm-2),則可獲得最低的最大功率損失為1.1%與矽薄膜太陽能電池之轉換效率8.3%。

    Inkjet printing technology has made great improvements in print quality and reproduction speed, and is now widely used in the modern electronics packaging industry. The merits of this approach include variable drop size, high precision in positioning, rapid prototyping, and low production cost. However, parameter adjustment is necessary when operating a piezoelectric device at high temperature in order to pile up the molten metallic droplets in stable formations.
    The Sn-3Ag-0.5Cu lead-free solder material was employed in this study for observing droplets pile up and micro line structures during inkjet printing, and bonding silicon thin-film solar cell modules of the ink-jet printing method. First, the effects of the jet height and variations in impact velocity of successive droplets piled up shapes were observed. The other objective is to obtain the widths and shapes of the molten micro droplets. The effects of the dot spacing, sample temperature and variations in motion velocity of consistent droplets on the shapes of the conducting lines were recorded. Finally, the purpose of this study is to investigate the wetting behavior of the Sn-3Ag-0.5Cu solder alloy and inkjet printing for bonding on the aluminum electrode of a silicon thin-film solar cell substrate. Molten lead-free solder was deposited by utilizing inkjet printing to replace silver paste, thus improving the bonding strength of the connections between the back electrode of the aluminum and copper ribbon in the fabrication of thin-film solar cell modules.
    A high-speed digital camera was used to record the solder impact and examine the accuracy of the pile up. These impact conditions correspond to We =2.1-15.1 and Oh =5.4×10-3-3.8×10-3. The diameter, volume and velocity of the inkjet solder droplet are around 37-65 μm, 25-144 picoliters, and 2.0-3.7 m∙s-1, respectively. The vertical and inclined column structures of molten lead-free solder can be fabricated using piezoelectric ink-jet printing systems. The line width of each sample was then calculated using a formula over a temperature range of 30 to 70 °C. The results showed that a metallic line with a width of 55 μm can be successfully printed with dot spacing (50 μm) and the stage velocity (50 mm∙s-1) at the substrate temperature of 30 °C. The experimental results revealed that the height (from 0.63 to 0.58) and solidification contact angle (from 72° to 56°) of the metallic micro droplets decreased as the temperature of the sample increased from 30 to 70 °C. The peel strength of the Sn-3.0Ag-0.5Cu solder alloy is better than that of silver paste when the dot spacing of solder droplets is lower than 200 μm (a density of over 50 μg∙mm-2). The findings also show that the contact resistance of the solder alloy is better than that of silver paste when the dot spacing of solder droplets is lower than 100 μm. This results in a low power loss of solar cells of 1.1%, and a good photovoltaic conversion efficiency of over 8.3%. This study thus demonstrates the feasibility of decreasing the efficiency loss of solar cells by employing the proper spacing of lead-free solder droplets by inkjet printing.

    中文摘要 I SUMMARY III 致 謝 XII 目 錄 XV 表目錄 XIX 圖目錄 XX 符號對照表 XXVI 第一章 前言 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 直接輸出技術 3 1-2-2 噴墨印刷技術 3 1-2-2-1 噴墨印刷技術演進 4 1-2-2-2 連續式噴墨印刷 5 1-2-2-3 自控式噴墨印刷 6 1-2-2-4 壓電式噴墨印刷 7 1-2-2-5 微液滴形成 8 1-2-2-6 無因次參數 9 1-2-3 熔融液滴沉積與堆疊 10 1-2-4 控制方程式 13 1-2-4-1 流體體積法 13 1-2-4-2 連續方程式 14 1-2-4-3 動量方程式 14 1-2-5 壓電噴墨在太陽能電池應用 14 1-2-6 太陽能電池 15 1-2-6-1 太陽能電池原理 15 1-2-6-2 太陽能電池種類 18 1-2-6-3 矽薄膜太陽能電池 19 1-2-6-4 太陽能電池的特性曲線 21 1-2-7 接合技術 24 1-3 研究目的 27 第二章 實驗方法及步驟 47 2-1 實驗設備 47 2-2 材料與試片製備 48 2-3 實驗條件設定 49 2-4 微液滴觀測及分析 51 2-5 數值模擬 52 2-6 迴焊試驗 53 2-7 接觸角量測 55 2-8 微衝擊試驗 55 2-9 接合試驗 56 2-10 轉換料率量測 56 2-11 剝離強度試驗 57 2-12 顯微組織觀察 57 第三章 結果與討論 72 3-1 Sn-3Ag-0.5Cu無鉛銲錫製備堆疊結構 72 3-1-1 Sn-3Ag-0.5Cu無鉛銲錫微液滴成形過程 72 3-1-2 熔融無鉛銲錫單一顆微液滴沉積之實驗結果 73 3-1-3 熔融無鉛銲錫單一顆微液滴沉積之模擬結果 74 3-1-4 熔融無鉛銲錫多顆微液滴堆疊之實驗結果 76 3-1-5 熔融無鉛銲錫多顆微液滴波紋形成之模擬結果 77 3-1-6 熔融無鉛銲錫多顆微液滴堆疊之模擬結果 78 3-1-7 噴印高度與脈衝電壓對金屬微液滴多顆堆疊之影響 81 3-1-8 擴展因子對金屬微液滴沉積行為之影響 83 3-2 Sn-3Ag-0.5Cu無鉛銲錫製備金屬微導線結構 84 3-2-1 Sn-3Ag-0.5Cu無鉛銲錫微液滴成形過程 84 3-2-2 液滴間距對沉積導線形態之影響 85 3-2-3 載台移動速度對沉積導線形態之影響 87 3-2-4 試片溫度對沉積導線形態之影響 88 3-2-5 試片溫度對沉積二維圖案結構之影響 90 3-3 Sn-3Ag-0.5Cu無鉛銲錫於矽薄膜太陽能電池接合之應用 93 3-3-1 助銲劑濃度對迴焊過程潤濕性之影響 93 3-3-3 金屬微液滴間距對接合強度之影響 95 3-3-4 金屬微液滴間距對轉換效率之影響 97 第四章 結論 134 參考文獻 136

    [1] D. Attinger, Z. Zhao and D. Poulikakos, “An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics”, Journal of Heat Transfer, 122 (2000) 544-556.
    [2] M. Pasandideh-Fard, S. Chandra and J. Mostaghimi, “A Three-Dimensional Model of Droplet Impact and Solidification”, International Journal of Heat and Mass Transfer, 45 (2002) 2229-2242.
    [3] S. Haferl and D. Poulikakos, “Experimental Investigation of the Transient Impact Fluid Dynamics and Solidification of a Molten Microdroplet Pile-up”, International Journal of Heat and Mass Transfer, 46 (2003) 535-550.
    [4] C . Le Bot, S. Vincent and E. Arquis, “Impact and Solidification of Indium Droplets on a Cold Substrate”, International Journal of Thermal Sciences, 44 (2005) 219-233.
    [5] A. L. Yarin, “Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing...”, Annual Review of Fluid Mechanics, 38 (2006) 159-192.
    [6] S. Vincent, C. Le Bot, F. Sarret, E. Meillot, J. P. Caltagirone and L. Bianchi, “Penalty and Eulerian-Lagrangian VOF methods for Impact and Solidification of Metal Droplets Plasma Spray Process”, Computers and Fluids, 113 (2015) 32-41.
    [7] H. A. Yang, M. C. Wu and W. L. Fang, “Localized Induction Heating Solder Bonding for Wafer Level MEMS Packaging”, Journal of Micromechanics and Microengineering, 15 (2005) 394-399.
    [8] M. Esashi, “Wafer Level Packaging of MEMS”, Journal of Micromechanics and Microengineering, 18 (2008) 073001.
    [9] D. Wallace, D. Hayes, T. Chen, V. Shah, D. Radulescu, P. Cooley, K. Wachtler and A. Nallani, “Think Additive: Ink-Jet Deposition of Materials for MEMS Packaging”, 6th Topical Workshop on Packaging of MEMS and Related Micro-Nano-Bio Integrated Systems Volume: IMAPS MEMS, (2004) 1-7.
    [10] C. H. Wang, H. L. Tsai, Y. C. Wu and W. S. Hwang, “Investigation of Molten Metal Droplet Deposition and Solidification for 3D Printing Techniques”, Journal of Micromechanics and Microengineering, 26 (2016) 095012.
    [11] N. Lass, L. Riegger, R. Zengerle and P. Koltay, “Enhanced Liquid Metal Micro Droplet Generation by Pneumatic Actuation Based on the StarJet Method”, Micromachines, 4 (2013) 49-66.
    [12] S. B. Fuller, E. J. Wilhelm and J. M. Jacobson, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems”, Journal of Microelectromechanical Systems, 11 (2002) 54-60.
    [13] J. Luo, L. H. Qi, Y. Tao, Q. Ma and C. W. Visser, “Impact-Driven Ejection of Micro Metal Droplets on-Demand”, International Journal of Machine Tools and Manufacture, 106 (2016) 67-74.
    [14] A. C. Fischer, M. Mäntysalo and F. Niklaus, “Inkjet Printing, Laser-Based Micromachining and Micro 3D Printing Technologies for MEMS”, In Handbook of Silicon Based MEMS Materials and Technologies, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, (2015) 550-564.
    [15] B. K. Gale, M. A. Eddings, S. O. Sundberg, A. Hatch, J. K. Kim and T. Ho, “Low-Cost MEMS Technologies”, Comprehensive Microsystems, 1 (2008) 341-378.
    [16] H. Y. Kim, T. Karahalios, T. Qiu and J. H. Chun, “Microsensor for Impact of Molten Metal Microdrops”, Sensors and Actuators A-Physical, 116 (2004) 417-423.
    [17] G. Y. Jang and J. G. Duh, “Elemental Redistribution and Interfacial Reaction Mechanism for the Flip Chip Sn-3.0Ag-(0.5 or 1.5)Cu Solder Bump with Al/Ni(V)/Cu Under-Bump Metallization During Aging”, Journal of Electronic Materials, 35 (2006) 2061-2070.
    [18] P. Cooley, D. Wallace and B. Antohe, “Applicatons of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems”, Journal of the Association for Laboratory Automation, 7 (2002) 33-39.
    [19] S. Ogawa, S. Soda, S. S. Lee, S. Izuo and Y. Yoshida, “RF-MEMS Switch with Through-Silicon Via by the Molten Solder Ejection Method”, Sensors and Actuators A-Physical, 181 (2012) 77-80.
    [20] Y. Yokoyama, K. Endo, T. Iwasaki and H. Fukumoto, “Variable-Size Solder Droplets by a Molten-Solder Ejection Method”, Journal of Microelectromechanical Systems, 18 (2009) 316-321.
    [21] J. Tlusty, “High-Speed Machining”, CIRP Annals - Manufacturing Technology, 42 (1993) 733-738.
    [22] H. Schulz and T. Moriwaki, “High-Speed Machining”, CIRP Annals - Manufacturing Technology, 41 (1992) 637-643.
    [23] S. N. Grigoriev, V. K. Starkov, N. A. Gorin, P. Krajnik and J. Kopač, “Creep-Feed Grinding: An Overview of Kinematics, Parameters and Effects on Process Efficiency”, Journal of Mechanical Engineering, 60 (2014) 213-220.
    [24] Y. Furukawa, S. Ohishi and S. Shiozaki, “Selection of Creep Feed Grinding Conditions in View of Workpiece Burning”, Annals of the CIRP, 28 (1979), 213-218.
    [25] J. Webster, E. Brinksmeier, C. Heinzel, M. Wittmann and K. Thoens, “Assessment of Grinding Fluid Effectiveness in Continuous-Dress Creep Feed Grinding”, CIRP Annals - Manufacturing Technology, 51 (2002) 235-240.
    [26] J. T. Hai, F. Z. Gong, X. M. Wang, X. Y. Qin and T. Y. Ma, “Superplastic Precision Forming of Ti-Alloy Integrated Turbine Disc”, CIRP Annals - Manufacturing Technology, 35 (1986) 185-187.
    [27] G. N. Levy, R. Schindel and J. P. Kruth, “Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives”, CIRP Annals - Manufacturing Technologyy, 52 (2003) 589-609.
    [28] K. K. B. Hon, L. Li and I. M. Hutchings, “Direct Writing Technology - Advances and Developments”, CIRP Annals - Manufacturing Technology, 57 (2008) 601-620.
    [29] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet and D. Poulikakos, “All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles”, Nanotechnology, 18 (2007) 345202.
    [30] A. Soleimani-Gorgani, “14 - Inkjet Printing”, In Printing on Polymers: Fundamentals and Applications, 1st Edition, J. Izdebska, S. Thomas, Eds., William Andrew: Norwich, NY, USA, (2016) 231-246.
    [31] W. J. Lloyd and H. H. Taub, “13 – Ink Jet Printing”, In Output Hardcopy Devices, Edition, R. Durbeck, Eds., Academic Press, Inc., (1988) 311-340.
    [32] F. Savart, “Mémoire sur la Constitution des Veines Liquides Lancées par des Orifices Circulaires en Mince Paroi”, Annales de chimie et de physique, 53 (1833) 337-386.
    [33] M. T. Plateau, “XXXVII. On the Recent Theories of the Constitution of Jets of Liquid Issuing from Circular Orifices”, Philosophical Magazine, 12 (1856) 286-297.
    [34] L. Rayleigh, “On the Instability of Jets”, Proceedings London Mathematical Society, 10 (1878) 4-13.
    [35] L. Rayleigh, “On the Capillary Phenomena of Jets”, Proceedings of the Royal Society of London, 29 (1879) 71-97.
    [36] E. Rune, “Measuring Instrument of the Recording Type”, US Patent 2,566,433, Issued Sept. 4, (1951).
    [37] R. G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink Jets”, Review of Scientific Instruments, 36 (1965) 131-136.
    [38] W. L. Buehner, J. D. Hill, T. H. Williams and J. W. Woods, “Application of Ink Jet Technology to a Word Processing Output Printer”, IBM Journal of Research and Development, 21(1977) 2-9.
    [39] E. Tekin, P. J. Smith and U. S. Schubert, “Inkjet Printing as a Deposition and Patterning Tool for Polymers and Inorganic Particles”, Soft Matter, 4 (2008) 703-713.
    [40] D. B. Bogy and F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices”, IBM Journal of Research and Development, 28 (1984) 314-321.
    [41] H. Dong, W. W. Carr and J. F. Morris, “Visualization of Drop-on-Demand Inkjet: Drop Formation and Deposition”, Review of Scientific Instruments, 77 (2006) 085101.
    [42] J. Luo, L. H. Qi, S. Y. Zhong, J. M. Zhou and H. J. Li, “Printing Solder Droplets for Micro Devices Packages Using Pneumatic Drop-on-Demand (DOD) Technique”, Journal of Materials Processing Technology, 212 (2012) 2066-2073.
    [43] W. D. Ristenpart, P. M. McCalla, R. V. Roy and H. A. Stone, “Coalescence of Spreading Droplets on a Wettable Substrate”, Physical Review Letters, 97 (2006) 064501.
    [44] M. H. Tsai, W. S. Hwang and H. H. Chou, “The Micro-Droplet Behavior of a Molten Lead-Free Solder in an Inkjet Printing Process”, Journal of Micromechanics and Microengineering, 19 (2009) 125021.
    [45] H. Y. Son, J. W. Nah and K. W. Paik, “Formation of Pb/63Sn Solder Bumps Using a Solder Droplet Jetting Method”, IEEE Transactions on Electronics Packaging Manufacturing, 28 (2005) 274-281.
    [46] D. W. Tian, C. Q. Wang and Y. H. Tian, “Effect of Solidification on Solder Bump Formation in Solder Jet Process: Simulation and Experiment”, Transactions of Nonferrous Metals Society of China, 18 (2008) 1201-1208.
    [47] D. Attinger and D. Poulikakos, “Melting and Resolidification of a Substrate Caused by Molten Microdroplet Impact”, Journal of Heat Transfer, 123 (2001) 1110-1122.
    [48] S. Schiaffino and A. A. Sonin, “Molten Droplet Deposition and Solidification at Low Weber Numbers”, Physics of Fluids, 9 (1997) 3172-3187.
    [49] D. B. Van Dam and C. Le Clerc, “Experimental Study of the Impact of an Ink-Jet Printed Droplet on a Solid Substrate”, Physics of Fluids, 16 (2004) 3403-3414.
    [50] S. Haferl and D. Poulikakos, “Transport and Solidification Phenomena in Molten Microdroplet Pileup”, Journal of Applied Physics, 92 (2002) 1675-1689.
    [51] H. J. Li, P. Y. Wang, L. H. Qi, H. S. Zuo, S. Y. Zhong and X. H. Hou, “3D Numerical Simulation of Successive Deposition of Uniform Molten Al Droplets on a Moving Substrate and Experimental Validation”, Computational Materials Science, 65 (2012) 291-301.
    [52] Y. P. Chao, L. H. Qi, H. S. Zuo, J. Luo, X. H. Hou and H. J. Li, “Remelting and Bonding of Deposited Aluminum Alloy Droplets under Different Droplet and Substrate Temperatures in Metal Droplet Deposition Manufacture”, International Journal of Machine Tools and Manufacture, 69 (2013) 38-47.
    [53] H. S. Zuo, H. J. Li, L. H. Qi, J. Luo, S. Y. Zhong and Y. F. Wu, “Effect of Non-Isothermal Deposition on Surface Morphology and Microstructure of Uniform Molten Aluminum Alloy Droplets Applied to Three-Dimensional Printing”, Applied Physics A, 118 (2015) 327-335.
    [54] C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, Journal of Computational Physics, 39 (1981) 201-225.
    [55] J. Du, Z. Y. Wei, Z. Chen, S. L. Li and Y. P. Tang, “Numerical Investigation of Pileup Process in Metal Microdroplet Deposition Manufacture”, Micromachines, 5 (2014) 1429-1444.
    [56] 翁敏航, ”太陽能電池-原理、元件、材料、製程與檢測技術”, 東華書局, 2011.
    [57] 蔡進譯, ”超高效率太陽電池-從愛因斯坦的光電效應談起”, 物理雙月刊, 27 (2005) 701-719.
    [58] 劉佳怡, “太陽光電供應鏈淺談(2), 太陽電池技術發展”, Feature產業特輯, (2007) 66-70.
    [59] H. F. Sterling and R. C. G. Swann, “Chemical Vapour Deposition Promoted by r.f. Discharge”, Solid-State Electronics, 8 (1965) 653-654.
    [60] R. C. Chittick, J. H. Alexander and H. F. Sterling, “The Preparation and Properties of Amorphous Silicon”, Journal of The Electrochemical Society, 116 (1969) 77-81.
    [61] W. E. Spear and P. G. Le Comber, “Substitutional Doping of Amorphous Silicon”, Solid State Communications, 88 (1993) 1015-1018.
    [62] D. E. Carlson and C. R. Wronski, “Amorphous Silicon Solar Cell”, Applied Physics Letters, 28 (1976), 671-673.
    [63] T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal and H. M. Upadhyaya, “Solar Photovoltaic Electricity: Current Status and Future Prospects”, Solar Energy, 85 (2011) 1580-1608.
    [64] B. Salam, C. Virseda, H. Da, N. N. Ekere and R. Durairaj, “Reflow Profile Study of the Sn-Ag-Cu Solder”, Soldering and Surface Mount Technology, 11 (2004) 27-34.
    [65] H. J. Chang and W. S. Hwang, “Simulation of Shape and Temperature Field Evolution of Solder Joints during Reflow Solidification Process”, International Journal of Cast Metals Research, 22 (2009) 131-134.
    [66] H. H. Hsieh, F. M. Lin, F. Y. Yeh and M. H. Lin, “The Effects of Temperature and Solders on the Wettability between Ribbon and Solar Cell”, Solar Energy Materials and Solar Cells, 93 (2009) 864-868.
    [67] L. C. Shiau, C. E. Ho and C. R. Kao, “Reactions between Sn–Ag–Cu Lead-Free Solders and the Au/Ni Surface Finish in Advanced Electronic Packages”, Soldering and Surface Mount Technology, 14 (2002) 25-29.
    [68] European Union, “Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)”, Official Journal of the European Union, (2003) L37119. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0019:0023:EN:PDF
    [69] C. Handwerker, “Transitioning to Lead-Free Assemblies”, Printed Circuit Design and Manufacture, (2005) 17-23.
    [70] S. T. Nurmi, J. J. Sundelin, E. O. Ristolainen and T. K. Lepisto, “The Effect of PCB Surface Finish on Lead-Free Solder Joints”, Soldering and Surface Mount Technology, 17 (2005) 13-23.
    [71] M. Abtew and G. Selvaduray, “Lead Free Solder in Microelectron”, Materials Science and Engineering: R: Reports, 27 (2000) 95-141.
    [72] E. H. Wong, R. Rajoo, S. K. W. Seah, C. S. Selvanayagam, W. D. van Driel, J. F. J. M. Caers, X. J. Zhao, N. Owens, L. C. Tan, M. Leoni, P. L. Eu, Y. S. Lai and C. L. Yeh, “Correlation Studies for Component Level Ball Impact Shear Test and Board Level Drop Test”, Microelectronics Reliability, 48 (2008) 1069-1078.
    [73] K. T. Tsai, F. L. Liu, E. H. Wong and R. Rajoo, “High Strain Rate Testing of Solder Interconnections”, Soldering and Surface Mount Technology, 18 (2006) 12-17.
    [74] R. A. Islam, Y. C. Chan, W. Jillek and S. Islam, “Comparative Study of Wetting Behavior and Mechanical Properties (Microhardness) of Sn-Zn and Sn-Pb Solders”, Microelectronics Journal, 37 (2006) 705-713.
    [75] M. Bigas and E. Cabruja, “Characterisation of electroplated Sn/Ag solder bumps”, Microelectronics Journal, 37 (2006) 308-316.
    [76] P. Ratchev, T. Loccufier, B. Vandevelde, B.Verlinden, S. Teliszewski, D. Werkhoven and B. Allaert, “A Study of Brittle to Ductile Fracture Transition Temperatures in Bulk Pb-Free Solders”, Proceedings of the 15th European Microelectronics and Packaging Conference and Exhibition, Bruges, Belgium, (2005) 248-252.
    [77] A. F. J. Baggerman and D. Schwarzbach, “Solder-Jetted Eutectic PbSn Bumps for Flip-Chip”, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 21 (1998) 371-381.
    [78] V. H. Stott, “The Measurement of the Viscosity of a Molten Metal by means of an Oscillating Disc”, Proceedings of the Physical Society, 45 (1933) 530-544.
    [79] J. Glazer, “Microstructure and Mechanical Properties of Pb-free Solder Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, 23 (1994) 693-700.
    [80] 施嘉玲, “錫鋅銀無鉛銲錫與銅基材之潤濕行為”, 國立成功大學碩士論文, 2002.
    [81] JESD22-B117, “Test Method B117: Solder Ball Shear”, JEDEC Solid State Technology Association﹐(2000) 1-10.
    [82] 戴寶通、鄭晃忠, ”太陽能電池技術手冊”, 台灣電子材料與元件協會, 2008.
    [83] J. Wendt, M. Trager, R. Klengel, M. Petzold, D. Schade and R. Sykes, “Improved Quality Test Method for Solder Ribbon Interconnects on Silicon Solar Cells”, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, (2010) 1-4.
    [84] C. Mundo, M. Sommerfeld and C. Tropea, “Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process”, International Journal of Multiphase Flow, 21 (1995) 151-173.
    [85] S. T. Thoroddsen and J. Sakakibara, “Evolution of the Fingering Pattern of an Impacting Drop”, Physics of Fluids, 10 (1998) 1359-1374.
    [86] H. Shang, Z. L. Ma, S. A. Belyakov and C. M. Gourlay, “Grain Refinement of Electronic Solders: The Potential of Combining Solute with Nucleant Particles”, Journal of Alloys and Compounds, 715 (2017) 471-485.
    [87] Z. L. Ma, S. A. Belyakov and C. M. Gourlay, “Effects of Cobalt on the Nucleation and Grain Refinement of Sn-3Ag-0.5Cu Solders”, Journal of Alloys and Compounds, 682 (2016) 326-337.
    [88] B. Arfaei, N. Kim and E. J. Cotts, “Dependence of Sn Grain Morphology of Sn-Ag-Cu Solder on Solidification Temperature”, Journal of Electronic Materials, 41 (2012) 362-374.
    [89] X. Chen, F. Xue, J. Zhou and Y. Yao, “Effect of In on Microstructure, Thermodynamic Characteristic and Mechanical Properties of Sn–Bi Based Lead-Free Solder”, Journal of Alloys and Compounds, 633 (2015) 377-383.
    [90] W. R. Osório, D. R. Leiva, L. C. Peixoto, L. R. Garcia and A. Garcia, “Mechanical Properties of Sn–Ag Lead-Free Solder Alloys Based on the Dendritic Array and Ag3Sn Morphology”, Journal of Alloys and Compounds, 562 (2013) 194-204.
    [91] W. R. Osório, L. C. Peixoto, L. R. Garcia, N. Mangelinck-Noël and A. Garcia, “Microstructure and Mechanical Properties of Sn–Bi, Sn–Ag and Sn–Zn Lead-Free Solder Alloys”, Journal of Alloys and Compounds, 572 (2013) 97-106.
    [92] B. L. Silva, N. Cheung, A. Garcia and J. E. Spinelli, “Thermal Parameters, Microstructure, and Mechanical Properties of Directionally Solidified Sn-0.7 wt.%Cu Solder Alloys Containing 0 ppm to 1000 ppm Ni”, Journal of Electronic Materials, 42 (2013) 179-191.
    [93] E . Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraslı and A. Ülgen, “Experimental Investigation of the Effect of Solidification Processing Parameters on the Rod Spacings in the Sn-1.2 wt.%Cu Alloy”, Journal of Alloys and Compounds, 486 (2009) 199-206.
    [94] J. M. Waldvogel and D. Poulikakos, “Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate”, International Journal of Heat and Mass Transfer, 40 (1997) 295-309.
    [95] S. Vincent, C. L. Bot, F. Sarret, E. Meillot, J. P. Caltagirone and L. Bianchi, “Penalty and eulerian–lagrangian VOF methods for impact and solidification of metal droplets plasma spray process”, Computers and Fluids, 113 (2015) 32-41.
    [96] R. Li, “Droplet Deposition in Solid Ink Printing”, Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2008.
    [97] I. Kim, M. I. Kang, S. W. Kim, E. Jung and S. H. Lee, “Thermal Diffusivity of Sn-Ag-Cu-Based, Pb-Free, Micro- and Nano-Sized Solder Balls”, Thermochimica Acta, 542 (2012) 42-45.
    [98] F. Gao and A. A. Sonin, “Precise Deposition of Molten Microdrops: The Physics of Digital Microfabrication”, Proceedings of The Royal Society A, 444 (1994) 533-554.
    [99] B. R. Strohmeier, “Surface Characterization of Aluminum Foil Annealed in the Presence of Ammonium Fluoborate”, Applied Surface Science, 40 (1989) 249-263.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE