簡易檢索 / 詳目顯示

研究生: 戴健軒
Tai, Chien-Hsuan
論文名稱: 整合型微流體系統應用於流感傳染病及癌症細胞致癌基因之快速檢測
Integrated Microfluidic Systems for Rapid Detection of Influenza Infections and Diagnosis of Oncogenes in Cancer Cells
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 113
中文關鍵詞: 流感病毒DNA 微陣列螢光原位雜交微機電系統微流體
外文關鍵詞: Influenza virus, DNA microarray, FISH, MEMS, microfluidics
相關次數: 點閱:150下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近,每年很多人死於流感。流感是由流感病毒引起的急性呼吸道感染疾病,是一種快速傳播的病毒。迄今為止,全球已有超過10000例死亡人數,而此死亡人數在流感高峰期預估增加至百萬人。流感大流行受到全球各國廣泛關注,成為當前公共衛生重要的議題。分子檢測可以提供一個高靈敏度及高專一性應用於流感檢測,傳統的分子診斷方法是利用反轉錄聚合酶鏈反應 (RT-PCR)和平板跑膠法鑑定來檢測流感傳染病。然而,整個程序需要約4個多小時之久。因此,急需發展一個有效的平台可提供快速篩選季節和新型流感病毒。除了傳染性疾病,對人類健康嚴重構成威脅的是遺傳性疾病和癌症,DNA微陣列和螢光原位雜交(FISH)兩大技術已廣泛被用於檢測相關的遺傳性疾病和癌症。對於傳統的這二種技術,它們通常有著繁雜的實驗流程、耗時的雜交過程及昂貴的試劑。另外,他們還需要數位訓練有素的專業人員來執行整個實驗過程。
    為了解決上述這些問題,本論文提出了三種新型的微流體整合平台應用於流感及癌症相關疾病檢測。此三種微流體平台整合微幫浦,微混合器和溫度控制模組。這些微流體整合平台能夠自動化處理臨床生物樣品,遺傳基因的鑑定和相關疾病的診斷。首先提出是流感整合型平台,該系統能快速診斷和分類不同的亞型流感病毒。此一整合型平台能進行樣品的前處理,核酸擴增和光學檢測流感病毒。整個流程,包括病毒裂解,萃取核糖核酸(RNA),反轉錄(RT),聚合酶鏈反應(PCR),以及光學檢測,成功地整合再一起。從光學檢測模組獲得的信號,能夠準確區分甲型流感A/H1N1(infA/H1N1),甲型流感A/H3N2(infA/H3N2),乙型流感B(INFB),陽性和陰性對照樣本。實驗結果表明,該開發的微流體系統可以成功地在60分鐘內區分同的亞型流感病毒。此外,本系統也成功地應用在92名患者喉頭檢體測試。且有著超過90%之靈敏度及100%之專一性。

    接下來針對DNA微陣列技術本論文提出第二型整合型平台,此整合型平台能夠自動地進行樣品的前處理和微陣列的雜交過程。整個步驟包括細胞裂解、信使核糖核酸(mRNA)的反轉錄(RT)及互補脫氧核糖核酸(cDNA)的雜交純化,都能在這個整合型平台自動執行。相比較於傳統方式整個實驗流程須達十個小時,藉由這個整合型微流體晶片平台,可以在六小時內自動執行整個實驗,且可以避免因為人為操作不當而產生汙染及可以減少生物樣品和試劑的消耗。因此,本晶片系統期待在不久的將來可以提供一個有用的平台在遺傳分析和診斷應用。最後,本論文所提出之第三型整合型平台為應用於螢光原位雜交技術應用於偵測細胞染色體異常。此整合型平台能夠完整自動化執行繁雜螢光原位雜交技術且比傳統方式有許多優勢,包括減少生物樣品和試劑的消耗,自動化減少人工汙染且比較傳統方法需要10小時,此平台只需3小時內即可達成。我們希望此開發系統能在不久的將來應用於檢測傳染病和遺傳性疾病。

    Recently, many people die from influenza every year. The influenza virus is a type of rapidly transmitted virus, infecting the upper respiratory tract and sometimes causing acute viral respiratory illness. To date, more than 10,000 cases worldwide have died of the disease and this number increases to millions in some pandemic years. This virus has raised serious concerns in the public health worldwide. Molecular detection may provide a more sensitive and selective diagnosis. Traditional reverse transcription polymerase chain reaction (RT-PCR) and slab-gel electrophoresis can be used for detection of an influenza infection. However, it usually takes more than 4 hours to perform the entire assay. Therefore, methods and tools for the rapid screening and diagnosis of seasonal and novel influenza infections are in great demand. In addition to infectious diseases, genetic diseases and cancer present serious threats to human health. DNA microarray and the fluorescence in situ hybridization (FISH) techniques have been widely used to detect related genetic diseases and cancers. Though effective, these two methods usually involve labor-intensive and time-consuming hybridization processes that require costly reagents and well-trained personnel to perform the entire assay.
    In order to address these problems, the current study presents three new microfluidic-based platforms for the detection of influenza and cancer. Fully integrated with micropumps, micromixers, and temperature control module, these microfluidic systems are capable of pre-treatment of clinical bio-samples, identification of specific genes and diagnosis of associated diseases. The first of such systems is an integrated microfluidic system that performs sample pre-treatment, nucleic acid amplification, and optical detection for the molecular diagnosis of influenza viruses. The entire analysis protocol – including virus lysis, ribonucleic acid (RNA) extraction, reverse transcription (RT), polymerase chain reaction (PCR), and optical detection – was successfully performed within an automated microfluidic system, which enabled rapid diagnosis and subtyping of multiple strains of the influenza virus. Signals obtained from the integrated optical detection module could accurately differentiate influenza A/H1N1 (infA/H1N1), influenza A/H3N2 (infA/H3N2), influenza B (infB), and positive and negative control samples. The experimental results demonstrated that this developed microfluidic system can successfully distinguish between infA/H1N1, infA/H3N2 and infB within 60 min. As a demonstration for the effectiveness of this platform, oral swabs from 92 patients were tested using the developed microfluidic system, which demonstrated over 90% sensitivity and 100% specificity. The second developed platform, which combines DNA microarray technology with microfluidics, is capable of automatically performing the sample pretreatment and hybridization processes that are required for microarray-based detection – including cell lysis, messenger ribonucleic acid (mRNA) extraction, reverse transcription (RT), complementary deoxyribonucleic acid (cDNA) purification, and hybridization. The employment of this microfluidic system dramatically shortens the analysis time from over 10 hours to 6 hours. This developed system may provide a useful platform for applications in genetic analysis and diagnosis. The third platform entails a novel integrated microfluidic chip capable of detecting cancer by performing a complete FISH recipe and probing the chromosomal abnormality of cells in an automated fashion. In this study, several functional components were integrated on a single chip to perform automatic FISH on the microfluidic platform. The novel microfluidic system carried out the entire process automatically within 3 hours, where the conventional manual method required over 10 hours for performing the entire protocol. We expect pre-clinical testing of the developed system for detecting infectious and genetic diseases may lead to a promising technique.

    Abstract I 摘要 III 致謝 V Table of Contents VI List of Tables X List of Figures XI Abbreviation XXI Nomenclature XXIII Chapter 1 Introduction 1 1.1 MEMS and Microfluidic Technology 1 1.2 Infectious and Genetic Diseases 1 1.2.1 Infectious Diseases 2 1.2.2 Genetic Diseases 2 1.2.3 Influenza Viruses 3 1.2.4 Oligonucleoyide Microarrays 4 1.2.5 Fluorescence In Situ Hybridization (FISH) 5 1.3 Motivation and Objectives 5 Chapter 2 Theory and Chip Design 12 2.1 Microfluidic Control Systems 12 2.1.1 Chip Manufacturing Process 12 2.1.2 Circular-type Micropump 12 2.1.3 Suction-type Micropump 13 2.1.4 Mixing Efficient 13 2.1.5 Membrane Deformation Theory 14 2.2 Nucleic Acid Amplification Techniques 15 2.2.1 Polymerase Chain Reaction (PCR) and Reverse-Transcription PCR (RT-PCR) 15 2.3 Design of the Temperature Control Module 16 Chapter 3 An integrated microfluidic platform for rapid detection and subtyping of influenza viruses from clinical samples 21 3.1 Introduction 21 3.2 Materials and methods 25 3.2.1 Experimental process 25 3.2.2 Chip design 25 3.2.3 Fabrication process 27 3.2.4 Virus preparation 27 3.2.5 One-step RT-PCR protocol 28 3.3 Results and discussion 30 3.3.1 Characterization of the micropump 30 3.3.2 Selectivity test 30 3.3.3 Limit of detection of the integrated microfluidic system 32 3.3.4 Diagnosis of influenza infections using clinical specimens 35 3.4 Conclusion 35 Chapter 4 An integrated microfluidic system capable of sample pretreatment and hybridization for microarrays 49 4.1 Introduction 49 4.2 Materials and methods 52 4.2.1 Chip design 52 4.2.2 Fabrication process 53 4.2.3 Experimental process 54 4.2.3.1 Reverse-transcription (RT) process 56 4.2.3.2 Preparation of the oligonucleotide array membrane 57 4.2.3.3 Preparation of digoxigenin-labeled cDNA targets and hybridization reagents 57 4.2.4. Polymerase chain reaction (PCR) process 58 4.3 Results and discussion 59 4.3.1 Characterization of the microfluidic control module 59 4.3.2 Verification of extracted mRNA 61 4.3.3 Verification of hybridization 62 4.4 Conclusion 63 Chapter 5 A Novel Integrated Microfluidic Platform to Perform Fluorescence in situ Hybridization for Chromosomal Analysis 76 5.1 Introduction 76 5.2 Materials and methods 78 5.2.1 Chip design 78 5.2.2 Fabrication process 80 5.2.3 Experimental process 80 5.2.4 Sample preparation 81 5.3. Results and discussion 82 5.3.1 Characterization of the micropump 82 5.3.2 FISH analysis 84 5.4 Conclusion 85 Chapter 6 Conclusions and Future Work 93 6.1 Review of the Dissertation 93 6.2 Future Works 94 References 96 Publication List 112

    [1] Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 288, 113-116, 2000.
    [2] Fu AY, Chou HP, Spence F, Arnold H Quake SR. An integrated microfabricated cell sorter. Anal. Chem., 74, 2451-2457, 2002.
    [3] Tay FEH. Microfluidics and BioMEMS Applications. Kluwer Academic Publishers, Boston, 2002.
    [4] Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, vol. 1, pp. 244–248, 1990.
    [5] Gervais L, Delamarche E. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip, vol. 9, pp. 3330–3337, 2009.
    [6] Simonsen L, Clarke MJ, Williamson GD, Stroup DF, Arden NH, Schonberger LB. The Impact of Influenza Epidemics on Mortality: Introducing a Severity Index. Am J Public Health 87(12):1944-1950, 1997.
    [7] Webster RG, Bean WJ, Gorman OT. Evolution and ecology of influenza-A virus. Rev Microbiol 56(1):152-179, 1992.
    [8] Matsuzaki Y, Katsushima N, Nagai Y, Shoji M, Itagaki T, Sakamoto M, Kitaoka S, Mizuta K, Nishimura H. Clinical Features of Influenza C Virus Infection in Children. J Infect Dis 193(9):1229-1235, 2006.
    [9] Medina RA, García-Sastre A. Influenza A viruses: new research developments. Nature Rev 9:590-603, 2011.
    [10] Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, Tong S, Paulson JC, Wilson LA. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci 110(4):1458-1463, 2012.
    [11] Alexander DJ, Assaad F, Bachmann PA, Bögel K, Chu H, Easterday BC, Hannoun CM, Kaplan MM, Laver WG, Ottis K, Romvary JJ, Scholtissek C, Shortridge KF, Slepuskin AN, Tumova B, Webster RG. The ecology of influenza viruses: a WHO Memorandum. Bull World Health Organ 59(6):869-873, 1981.
    [12] Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y. Human infection with a novel avian-origin influenza A (H7N9) virus. N Enql Med 368(20): 1888-1897, 2013.
    [13] Laver WG, Bischofberger N, Webster RG. Disarming flu viruses. Sci Am 280(1):78-87, 1999.
    [14] Donatelli I, Campitelli L, Puzelli S, Affinito C, De Marco MA, Delogu M, Barigazzi G. Vet Res Commun Suppl 1:115-122, 2003.
    [15] Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531-569, 2000.
    [16] Woods JM, Bethell RC, Coates JA, Healy N, Hiscox SA, Pearson BA, Ryan DM, Ticehurst J, Tilling J, Walcott SM. 4-Guanidino-2, 4-dideoxy-2, 3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob Agents Chemother 37:1473-1479, 1993.

    [17] Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Jr, Haussler D. Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS 97:262-267, 2000.
    [18] Kerr MK, Churchill GA. Experimental design for gene expression microarrays. Biostatistics 2:183-201, 2001.
    [19] Froehlich H, Fellmann M, Sueltmann H, Poustka, Beissbarth T. Large scale statistical inference of signaling pathways from RNAi and microarray data. Bioinformatics doi:10.1186/1471-2105-8-386, 2007.
    [20] Harkin. Uncovering Functionally Relevant Signaling Pathways Using Microarray-Based Expression Profiling. The Oncologist 5:501-507, 2000.
    [21] Vaquerizas JM, Dopazo J, Díaz-Uriarte R. Web-based diagnosis and normalization for microarray data. Bioinformatics 20(18):3656-3658, 2004.
    [22] Zhang Y, Coyne MY, Will SG, Levenson CH, Kawasaki ES. Single-base mutational analysis of cancer and genetic diseases using membrane bound modified oligonucleotides. Nucleic Acids Res. 19: 3929–3933, 1991.
    [23] Gao X, Gulari E, Zhou X. In situ synthesis of oligonucleotide microarrays. Biopolymers 73(5):579-596, 2004.
    [24] Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using Bubble Jet technology. Nature Biotechnology 18: 438 – 441, 2000.
    [25] Mary-Huard T, Daudin JJ, Robin S, Bitton F, Cabannes E, Hilson P. Spotting effect in microarray experiments. BMC Bioinformatics 5:63, 2004.
    [26] Seo D, Ginsburg GS,Goldschmidt-Clermont PJ. Gene Expression Analysis of Cardiovascular Diseases Novel Insights Into Biology and Clinical Applications. J AM COLL CARDIOL doi:10.1016/j.jacc, 2008.
    [27] Lichter P, Ledbetter SA, Ledbetter DH, Ward DC. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Natl. Acad. Sci. USA 87:6634-6638, 1990.
    [28] Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J. luorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. USA 85:9138-9142, 1988.
    [29] Vanneste E, Melotte C, Debrock S, D’Hooghe T, Brems H, Fryns JP, Legius E, Vermeesch JR. Preimplantation genetic diagnosis using fluorescent in situ hybridization for cancer predisposition syndromes caused by microdeletions. Human Reproduction 24:1522-15238, 2009.
    [30] Fox JL, Hsu PH, Legator MS, Morrison LE, Seeling SA. Fluorescence in Situ Hybridization: Powerful Molecular Tool for Cancer Prognosis. Clinical Chemistry 41:1554-1559, 1995.
    [31] Huang SF, Xiao S, Renshaw AA, Loughlin KR, Hudson TJ, Fletcher JA. Fluorescence in Situ Hybridization Evaluation of Chromosome Deletion Patterns in Prostate Cancer. American Journal of Patbology 149:1565-157, 1996.
    [32] Leversha MA, Han J, Asgari Z, Danila DC, Lin O, Espinoza RG, Anand A, Lilja H., Heller G, Fleisher M, Scher HL. Fluorescence In situ Hybridization Analysis of Circulating Tumor Cells in Metastatic Prostate Cancer. Clinical Cancer Research 15:2091-2097, 2009.
    [33] Nath J, Johnson KL. A review of fluorescence in situ hybridization (FISH): Current status and future prospects. Biotech. Histochem 75:54-78, 2000.
    [34] Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA 79: 4381-4385, 1982.
    [35] Andreeff M, Pinkel D. Introduction to Fluorescence in Situ Hybridization. principles and clinical applications. p455, 1999.
    [36] Ye CJ, Stevens JB, Liu G, Ye KJ, Yang F, Bremer SW, Heng HHQ. Combined multicolor-FISH and immunostaining. Cytogenet Genome Res 114:227-234, 2006.
    [37] Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature 6:339-348, 2008.
    [38] Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease Biochemistry 18:5294-5299, 1979.
    [39] Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples Biotechniques 15:532-537, 1993.
    [40] Huang CJ, Lin HI, Shiesh SC, Lee GB. An integrated microfluidic system for rapid screening of alpha-fetoprotein aptamers. Biosens Bioelectron 35(1): 50-55, 2012.
    [41] Weng CH, Lien KY, Yang SY, Lee GB. A suction-type, pneumatic microfluidic device for liquid transport and mixing. Microfluid Nanofluid 10: 301-310, 2011.
    [42] Tseng HY, Wang CH, Lin WY, Lee GB. Membrane-activated microfluidic rotary devices for pumping and mixing. Biomed Microdevices 9:545-554, 2007.
    [43] Ochsner M, Textor M, Vogel V, Smith ML. Dimensionality Controls Cytoskeleton Assembly and Metabolism of Fibroblast Cells in Response to Rigidity and Shape. Plos One 5(3), 2010.
    [44] Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, Ten Berge D, Kalani Y. Wnt Signaling and Stem Cell Control. In: Stillman, B., Stewart, S., Grodzicker, T. (Eds.), Control and Regulation of Stem Cells, pp. 59-66. Cold Spring Harbor Laboratory Press, 2008.
    [45] Wang JH. A Miniature Polymerase Chain Reaction System for DNA Detection and Quantification. Dissertation for Doctor of Philosophy, Department of Engineering Science National Cheng Kung University, 2008.
    [46] Gilbert S. Techniques of Molecular Biology: Nucleic acid hybridization, 9th ed., Development Biology, USA, 2010.
    [47] J. Liu, M. Enzelberger, S. Quake. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 23:531–1536, 2002.
    [48] Liao CS, Lee GB, Wu JJ, Chang CC, Hsieh TM, Huang FC, Luo CH. Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases. Biosensors and Bioelectronics 20:1341–1348, 2005.
    [49] Tai CH, Ho CL, Chen YL, Chen WL, Lee GB. An Integrated Microfluidic Platform to Perform Fluorescence in situ Hybridization for Chromosomal Analysis. Microfluid Nanofluid DOI 10.1007/s10404-013-1190-0, 2013.
    [50] Huang CC, Chiu SH, Huang YF, Chang HT. Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor. Analytic Chemistry 79:4798–4804, 2007.
    [51] Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM. Protein–RNA interactions: a structural analysis. Nucleic Acids Research 29:943–954, 2001.
    [52] Hsieh TM, Luo CH, Wang JH, Lin JL, Lien KY, Lee GB. A two-dimensional, self-compensated, microthermal cycler for one-step reverse transcription polymerase chain reaction applications. Microfluid Nanofluid 6:797–809, 2009.
    [53] Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920. Spanish” influenza pandemic. Bull Hist Med 76(1):105-115, 2002.
    [54] Cox NJ, Subbarao K. Global epidemiology of influenza: past and present. Annu Rev Med 51:407-421, 2000.
    [55] Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459(7250):1122-1125, 2009.
    [56] Medina RA, Garcia-Sastre A. Influenza A viruses: new research developments. Rev Microbiol 9:590-603, 2011.
    [57] Zheng HJ, Tao ZH, Cheng WF, Piessens WF. Comparison of dot-ELISA with sandwich ELISA for the detection of circulating antigens in patients with bancroftian filariasis. Am J Trop Med Hygiene 42: 546-549, 1990.
    [58] Siavashi MR, Taherkhani H, Rezaei K, Deligani MRR, Assmar M. Comparison of Dot-ELISA and Sandwich ELISA Diagnostic Tests in Detection of Human Hydatidosis. Iran Biomed J 9(2): 91-94, 2005.
    [59] Chambers TM, Shortridge KF, Li PH, Powell DG, Watkins KL. Rapid diagnosis of equine influenza by the Directigen FLU-A enzyme immunoassay. Vet Rec 135(12):275-279, 1994.
    [60] Gavin P, Thomson Jr RB. Review of Rapid Diagnostic Tests for Influenza. Clin. Appl Immunol Rev 4 (3):151-172, 2003.
    [61] Hurt AC, Baas C, Deng YM, Roberts S, Kelso A, Barr IG. Performance of influenza rapid point-of-care tests in the detection of swine lineage A (H1N1) influenza viruses. Influenza Other Respi Viruses 3(4):171-176, 2009.
    [62] Faix DJ, Sherman SS, Waterman SH. Rapid-test sensitivity for novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 361:728– 729, 2009.
    [63] Vasoo S, Stevens J, Singh K. Rapid antigen tests for diagnosis of pandemic (swine) influenza A/H1N1. Clin Infect Dis 49:1090–1093, 2009.
    [64] Atmar RL, Baxter BD, Dominguez EA, Taber LH. Comparison of reverse transcription-PCR with tissue culture and other rapid diagnostic assays for detection of type A influenza virus. J Clin Microbiol 34(10): 2604–2606, 1996.
    [65] Smith AB, Mock B, Meleau R, Colarusso P, Willis DE. Rapid detection of influenza A and B viruses in clinical specimens by Light Cycler real time RT-PCR. J Clin Virol 28(1):51-58, 2003.
    [66] Hindiyeh M, Levy V, Azar R, Varsano N, Regev L, Shalev Y, Grossman Z, Mendelson E. Evaluation of a multiplex real-time reverse transcriptase PCR assay for detection and differentiation of influenza viruses A and B during the 2001-2002 influenza season in Israel. J Clin Microbiol 43(2):589-595, 2005.
    [67] Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294-5299, 1979.
    [68] Chomczynski P, Mackey K. Short technical report. Modification of the TRIZOL reagent procedure for isolation of RNA from Polysaccharide-and proteoglycan-rich sources. Biotechniques 19(6): 942-945, 1995.
    [69] Akin A, Wu CC, Lin TL. A comparison of two RNA isolation methods for double-stranded RNA of infectious bursal disease virus. J Virol Methods 74:179-184, 1988.
    [70] Cao QF, Meng YP, Sun Y. An effective quick method for total RNA extraction in Malus. J Agric Biotechnol 11(4):428-429, 2003.
    [71] Li JH, Tang CH, Song CY, Chen MJ, Feng ZY, Pan YJ. A simple, rapid and effective method for total RNA extraction from Lentinula edodes. Biotechnol Lett 28(15):1193-1197, 2006.
    [72] Choi JW, Ahn CH, Bhansali S, Henderson HT. A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sens Actuators B Chem 68:34-39, 2000.
    [73] Huang Y, Mather EL, Bell JL, Madou M. MEMS-based sample preparation for molecular diagnostics. Anal Bioanal Chem 372:49-65, 2002.
    [74] Gijs MAM. Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22-40, 2004.
    [75] Li SK, Lin CH, Chen YT, Lee LH, Liu HJ. Development of a reliable assay protocol for identification of diseases (RAPID)-bioactive amplification with probing for detection of avian reovirus. J Virol Methods 149(1):35-41, 2008.
    [76] Hawkins TL, O’Connor-Morin T, Roy A, Santillan C. DNA purification and isolation using a solid-phase. Nucleic Acids Res 22(21):4543–4544, 1994.
    [77] Jungell-Nortamo A, Syva¨nen AC, Luoma P, So¨derlund H. Nucleic acid sandwich hybridization: enhanced reaction rate with magnetic microparticles as carriers. Mol Cell Probes 2(4):281–288, 1988.
    [78] Lien KY, Liu CJ, Lin YC, Kuo PL, Lee GB. Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform. Microfluid Nanofluid 6:539-555, 2009.
    [79] Liu CJ, Lien KY, Weng CY, Shin JW, Chang TY, Lee GB. Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes. Biomed Microdevices 11:339-350, 2009.
    [80] McCalla SE, Ong C, Sarma A, Opal SM, Artenstein AW, Tripathi A. A Simple Method for Amplifying RNA Targets (SMART). J Mol Diagn 14(4):328-335, 2012.
    [81] Chomczynski P, Mackey K. Short technical report. Modification of the TRIZOL reagent procedure for isolation of RNA from Polysaccharide-and proteoglycan-rich sources. Biotechniques 19(6): 942-5, 1995.
    [82] Auroux PA, Iossifidi D, Reyes DR, Manz A. Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications. Anal Bioanal Chem 74:2637-2652, 2002.
    [83] Grodzinski P, Liu R, Yang J, Ward MD. Microfluidic system integration in sample preparation chip-sets-a summary. Proc of the 26th Annual International Conference of the IEEE EMBS:2615-2618, 2004.
    [84] Vilkner T, Janasek D, Manz A. Micro Total Analysis Systems. Recent Developments. Anal Chem 76:3373-3385, 2004.
    [85] Wang CH, Lien KY, Hung LY, Lei HY, Lee GB. Integrated microfluidic system for multiple subtyping of influenza virus by using molecular diagnosis approach. Microfluid Nanofluid 13(1):113-123, 2012.
    [86] Yang YN, Hsiung SK, Lee GB. A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluid 6:823-833, 2009.
    [87] Witthaya P, Piyathida P, Jarika M, Yong P, Sunchai P. Molecular detection and subtyping of human influenza A virus based on multiplex RT-PCR assay. Int Res J Biotech 2(5):085-092, 2011.
    [88] Kamol S, Sunchai P, Thaweesak C, Rujipat S, Alongkorn A, Thaweesak S, Arunee C, Pornchai C, Salin C, Apiradee T, Yong P. Typing (A/B) and subtyping (H1/H3/H5) of influenza A viruses by multiplex real-time RT-PCR assays. J Virol Methods 152:25-31, 2008.
    [89] Boonsuk P, Payungporn S, Chieochansin T, Samransamruajkit R, Amonsin A, Songserm T, Chaisingh A, Chamnanpood P, Chutinimitkul S, Theamboonlers A, Poovorawan Y. Detection of influenza virus types A and B and type A subtypes (H1, H3, and H5) by multiplex polymerase chain reaction. Tohoku J Exp Med 215(3):247-55, 2008.
    [90] Payungporn S, Chutinimitkul S, Chaisingh A, Damrongwantanapokin S, Buranathai C, Amonsin A, Theamboonlers A, Poovorawan Y. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J Virol methods 1131:143–147, 2006.
    [91] Thontiravong A, Payungporn S, Keawcharoen J, Chutinimitkul S, Wattanodorn S, Damrongwatanapokin S, Chaisingh A, Theamboonlers A, Poovorawan Y, Oraveerakul K. The single-step multiplex reverse transcription- polymerase chain reaction assay for detecting H5 and H7 avian influenza A viruses. Tohoku J Exp Med 211 (1):75-9, 2007.
    [92] Zhang C, Xing D. Single-molecule DNA amplification and analysis using microfluidics. Chem Rev 110:4910–4947, 2010.
    [93] Hall DA, Ptacek J, Snyder M. Protein microarray technology. Mechanisms of Ageing and Development 128: 161–167, 2007.
    [94] Hacia JG. Resequencing and mutational analysis using oligonucleotide microarrays. Nature Genetics 21:42–47, 1999.
    [95] Baner J, Isaksson A, Waldenstroem E, Jarvius J, Landegren U, Nilsson M. Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Res 31: e103/1-e03/7, 2003.
    [96] Grimm V, Ezaki S, Susa M, Knabbe C, Schmid RD, Bachmann, TT. Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J. Clin. Microbiol 42: 3766-377, 2004.
    [97] Ishikawa S, Komura D, Tsuji S, Nishimura K, Yamamoto S, Panda B, Huang J, Fukayama M, Jones KW, Aburatani H. Allelic dosage analysis with genotyping microarrays. Biochem. Biophys Res. Commun. 333:1309–1314, 2005.
    [98] Meaburn E, Butcher LM, Schalkwyk LC, Plomin, R. Genotyping pooled DNA using 100 K SNP microarrays: a step towards genome wide association scans. Nucleic Acids Res. 34 (4), e27, 2006.
    [99] Mezzasoma L, Bacarese-Hamilton T, Cristina MD, Rossi R, Bistoni F, Crisanti A. Antigen Microarrays for Serodiagnosis of Infectious Diseases. Clinical Chemistry 48:121-130, 2002.
    [100] Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Human Molecular Genetics 12: R145-R152, 2003.
    [101] Russo G, Zegar C, Giordano. Advantages and limitations of microarray technology in human cancer. Oncogene 22:6497–6507, 2003.
    [102] Wu CH, Lin SR, Yu FJ, Wu DC, Pan YS, Hsieh JS, Huang SY, Wang JY. Development of a high-throughput membrane-array method for molecular diagnosis of circulating tumor cells in patients with gastric cancers. Int J Cancer. 119(2):373-9, 2006.
    [103] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162(1):156-159, 1987.
    [104] Kathy M. Modification of the Standard Trizol-Based Technique Improves the Integrity of RNA Isolated from RNase-Rich Placental Tissue. Clinical Chemistry 52:159-160, 2006.
    [105] Xiang X, Qiu Q, Hegele RD, Tan WC. Comparison of different methods of total RNA extraction for viral detection in sputum. Journal of Virological Methods 94:129-135, 2001.
    [106] Auroux PA, Iossifidi D, Reyes DR, Manz A. Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications Analytical Chemistry 74:2637-2652, 2002.
    [107] Grodzinski P, Liu R, Yang J, Ward MD. Microfluidic system integration in sample preparation chip-sets-a summary. Proc of the 26th Annual International Conference of the IEEE EMBS:2615-2618, 2004.
    [108] Vilkner T, Janasek D, Manz A. Micro Total Analysis Systems. Recent Developments Analytical Chemistry 76:3373-3385, 2004.
    [109] Liu CJ, Lien KY, Weng CY, Shin JW, Chang TY, Lee GB. Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes. Biomed Microdevices 11: 339-350, 2009.
    [110] Lien KY, Lee WC, Lei HY, Lee GB. Integrated reverse transcription polymerase chain reaction systems for virus detection Biosensors and Bioelectronics. 22:1739–1748, 2007.
    [111] Southern E, Mir K, Shchepinov M. Molecular interactions on microarrays. Nature Genetics 21:5–9, 1999.
    [112] Fan JB, Hu SX, Craumer WC, Barker DL. BeadArray™-based solutions for enabling the promise of pharmacogenomics. BioTechniques 39:583-588, 2005.
    [113] Wang L, Li PCH. Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA. Analytical Biochemistry 400: 282–288, 2010.
    [114] Edman CF, Raymond D E, Wu D J, Tu E, Sosnowski RG, Butler WF, Nerenberg M, Heller MJ. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res 25:4907–4914, 1997.
    [115] Radtkey R, Feng L, Muralhida M, Duhon M, Canter D, DiPierro D, Fallon S, Tu E, McElfresh K, Nerenberg M, Sosnowski R. Rapid, high fidelity analysis of simple sequence repeats on an electronically active DNA microchip. Nucleic Acids Res 28:E17, 2000.
    [116] Yuen PK, Li G, Bao Y, Müller UR. Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip 3: 46–50, 2003.
    [117] Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA. Accessing genetic information with high–density DNA arrays. Science 274:610–614, 1996.
    [118] Huang CJ, Lin HI, Shiesh SC, Lee GB. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosensors and Bioelectronics 7:1761-1766, 2010.
    [119] Jang SJ, Soria JC, Wang L, Hassan KA, Morice RC, Walsh GL, Hong WK, Mao Li. Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis. Cancer Res 61:7959—7963, 2001.
    [120] Selvey S, Thompson EW, Matthaei K, Lea RA, Irivng MG, Griffiths LR. Beta-actin--an unsuitable internal control for RT-PCR. Mol Cell Probes 15(5):307-311, 2001.
    [121] Hong JW, Studer V, Hang G, Anderson WF, Quake SR. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology 22:435-439, 2004.
    [122] Tai CH, Shin JW, Chang TY, Hsiung SK, Lin CC, Lee GB. An integrated microfluidic system capable of sample pretreatment and hybridization for microarrays. Microfluid Nanofluid 10(5):999-1009, 2011.
    [123] Gu Y, Cimino G, Alder H, Nakamura T, Prasad R, Canaani o,, Moirt DT, Jones C, Nowell PC, Croce CM, Canaani E. The (4;11)(q21;q23) chromosome translocations in acute leukemias involve the VDJ recombinase. Genetics 89: 40464-10468, 1992.
    [124] Raj A, Bogaard PVD, Rifkin SA, Oudenaarden AV, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods 5:877-879, 2008.
    [125] Southern E, Mir K, Shchepinov M. Molecular interactions on microarrays. Nature Genetics 21:5–9, 1999.
    [126] Sieben VJ, Debes Marun CS, Pilarski PM, Kaigala GV., Pilarski LM, Backhouse CJ. FISH and chips: chromosomal analysis on microfluidic platforms IET Nanobiotechnol 1(3):27-35, 2007.
    [127] Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device.
    Lab Chip 7:565-573, 2007.
    [128] Weise A, Liehr T, Claussen U, Halbhuber K. Increased Efficiency of Fluorescence In Situ Hybridization (FISH) Using the Microwave. Journal of Histochemistry & Cytochemistry 53:1301-1303, 2005.
    [129] Kitayama Y, Igarashi H, Kozu T, Nagura K, Ohashi Y, Sugimura H. Repeated fluorescence in situ hybridization by a microwave-enhanced protocol. Pathology International 56:490-493, 2006.
    [130] Sieben VJ, Debes-Marun CS, Pilarski LM, Backhouse CJ. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip 8: 2151-2156, 2008.
    [131] Tai CH, Tsai YC, Wang CH, Ho TS, Chang CP, Lee GB. An integrated microfluidic platform for rapid detection and subtyping of influenza viruses from clinical samples*. Microfluid Nanofluid DOI: 10.1007/s10404-013-1249-y, 2013.

    下載圖示 校內:2018-09-06公開
    校外:2018-09-06公開
    QR CODE