| 研究生: |
林宜賢 Lin, Yi-Hsien |
|---|---|
| 論文名稱: |
邊坡動態基礎承載力試驗與分析 Model Tests and Analyses for Dynamic Bearing Capacity of Foundations Situated on Slopes |
| 指導教授: |
黃景川
Huang, Chin-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 264 |
| 中文關鍵詞: | 動態基礎承載力 、震動台試驗 、邊坡 、偏心 、傾斜載重 、模型基礎 、地震加速度 、擬靜態分析 |
| 外文關鍵詞: | Seismic bearing capacity, Shaking table test, Strip footing, Slope, Load eccentricity, Load inclination, dynamic, dynamic response, Pseudo-static analysis |
| 相關次數: | 點閱:161 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用長150 mm,直徑1.96 mm之鋼針模擬二向度(Two-dimensional)均勻顆粒土壤,製作高500 mm之邊坡,其上方放置兩種不同形式(固定及旋轉式)之100mm寬條型基礎(Strip foundation)。此一模型邊坡與基礎固定於1.52m×1.52m之震動台(最大加速度1.1g,最大荷重20kN),以三種不同的震動頻率,逐漸增大之正弦波形與真實地震波形進行實驗,探討邊坡在承受真實地震與規則之正弦波之動態行為差異,並將實驗成果與前人數值理論比較,將邊坡上方基礎之動態承載力行為反映於基礎承載力之設計與分析中。
本研究從加速度反應與基礎的震動反應狀況,去了解整體基礎動態穩定性之情況,從試驗與分析中得到以下結論:一、承受地震力之基礎,其變位與破壞模式受到基礎本身限制條件(Restraint condition)之影響很大。一般而言,固定式基礎(Rotation-restrained footing)之耐震性優於旋轉式(Free-rotating)之基礎。二、邊坡頂部之加速度增幅反應會隨著基礎形式與震動頻率而有所變化。三、邊坡破壞面向下方延伸之深度隨傾斜載重、載重大小與基礎形式之不同而變化。四、邊坡承受地震力之基礎承載力的修正中,需要同時考慮偏心的方向性問題,以Huang and Kang (2008b)後退基礎修正方式可得到合理的承載力修正係數。五、動態試驗中之最大地表水平加速度(HPGA)無法直接使用於擬靜態分析中;當HPGA/g=3∙k_h時,動態試驗結果與擬靜態理論一致。六、一般震動台試驗中所採用之逐漸增強正弦波加載,可能導致受震結構有過大變位與提早破壞的現象。
In the present study, bearing capacity of footings placed on slopes were investigated using reduce-scaled model tests. An idealized 2-D backfill consisting of uniform diameter steel rods was used as the test medium. The present study focuses on the restraint conditions of footings and the input wave characteristics on the dynamic bearing capacity and the stability of footings. The following conclusions were obtained:
1. The settlement and failure mode of foundation are greatly affected by the restraint condition imposed on footings. In general, the stability of fixed footing is superior to that of free-rotating.
2. On the top of the slope model, the acceleration amplification response varies with the footing types and input wave frequencies.
3. Depths of failure surfaces developed under the footing are influenced by the restraint conditions will affect the failure depth in dynamic situation.
4. The correction of bearing capacity on slope needs to consider the directionality of eccentricity and obtain a reasonable bearing capacity correction factor based on Huang and Kang (2008b).
5. A gap exists between the horizontal peak ground acceleration (amax) in the dynamic tests and the seismic coefficient (kh). This gap can be minimized by using the empirical rule of amax /3 = kh•g (g: gravitational acceleration)
6. The slope subjected to step-wise intensified sinusoidal waves tends to show larger displacements (or footing settlements), failing at relatively smaller values of amax than that subjected to random waves.
1. Askari, F., and Farzaneh, O. (2003) “Upper-bound solution for seismic bearing capacity of shallow foundation near slope” Geotechnique, Vol. 53, No. 8, pp. 697-702.
2. Al-Karni, A. A. and Budhu, M. (2001) “An experimental study of seismic bearing capacity of shallow footings” Proc. 4th International Conference on Recent advances in Geotechnical earthquake Engineering and soil dynamics and symposium in honor of professor W.D. Liam Finn.
3. Bowles, J. E. (1996) “Foundation Analysis and Design” McGraw-Hill book Company, 5th ed, Chapter 4, p. 213-280.
4. Budhu, M., and Al-Karni, A. (1993) “Seismic bearing capacity of soils” Geotechnique, Vol. 43, No. 1, pp. 181-187.
5. Cascone, E., and Casablanca, O. (2016) “Static and seismic bearing capacity of shallow strip footings” Soil Dynamic and Earthquake Engineering, Vol. 84, pp. 204-223.
6. Choudhury, D. and Subba Rao, K.S. (2005) “Seismic bearing capacity of shallow strip footings” Geotechnical and Geological Engineering, Vol. 23, No. 4, pp.403-418.
7. Choudhury, D. and Subba Rao, K.S. (2006) “Seismic bearing capacity of shallow strip footings embedded in slope” International Journal of Geomechanics, ASCE, Vol. 6, No. 3, pp. 176-184.
8. Das, B. M. (2011) “Principles of Foundation Engineering” Cengage Learing, 7th ed, Chapter 3-4, p. 133-221.
9. Dormieux, L., and Pecker, A. (1995) “Seismic bearing capacity of foundation on cohesionless soil” Journal of Geotechnical Engineering, Vol. 121, No. 3, pp. 300-303.
10. Fishman, KL., Richards, R., and Yao, D. (2003) “Inclination factors for seismic bearing capacity” Journal of Geotechnical Engineering, Vol. 129, No. 9, pp. 861-865.
11. Francesco, C. and Ernesto, M. (2010) “Bearing capacity of strip footing near slopes” Geotechnical and Geological Engineering, Vol. 28, No. 2, pp. 187-198.
12. Francesco, C. and Ernesto, M. (2012) “Seismic bearing capacity of shallow foundations” Earthquake-Resistant Structures-Design, Assessment and Rehabilitation, pp. 21-42.
13. Graham, J., Andrews, M. and Shields, D. H. (1988) “Stress characteristics for shallow footings in cohesionless slopes” Canadian Geotechnical Journal, Vol.25, No.2, pp. 238-249.
14. Hansen, J. B. (1970) “A Revised and Extended Formula for Bearing Capacity” Danish Geotechnical Institute, Copenhagen, Bulletin No.28.
15. Huang, C.-C., Menq, F. Y. and Chou, Y. C. (1999) “The effect of the bending rigidity of the wall on lateral pressure distribution” Canadian Geotechnical Journal, Vol. 36, No. 6, pp. 1039-1055.
16. Huang, C.-C., Tatsuoka, F. and Sato, Y. (1994) “Failure Mechanisms of Reinforced sand slopes Loaded with a footing” Soils and Foundations, Vol. 34, No. 2, pp. 27-40.
17. Huang, C.-C., and Kang, W.-W. (2008a) “Seismic Bearing Capacity of A Rigid Footing Adjacent To Cohesionless Slope” Soils and Foundations, Vol. 48, No. 5, pp. 641-651.
18. Huang, C.-C., and Kang, W.-W. (2008b) “The Effects of a Setback on the Bearing Capacity of a Surface Footing near a Slope” Journal of Geoengineering, Vol. 3, No. 1, pp. 25-32.
19. Huang, C.-C., Horng, J.-C., Chang, Chueh, S.-Y., W.-J., Chiou, J.-S., and Chen, C.-H., (2010) “Dynamic behavior of reinforced slopes: horizontal acceleration response’’ Geosynthetics International, Vol. 17, No. 4, pp. 207-219.
20. Huang, C.-C., Horng, J.-C., Chang, W.-J., Chiou, J.-S., and Chen, C.-H., (2011) “Dynamic behavior of reinforced walls – horizontal displacement response” Geotextiles and Geomembranes, Vol. 29, pp. 257-267.
21. Kutter, B. L., Abghari, A., and Cheney, J. A. (1988) “Strength Parameters for Bearing Capacity of Sand” Journal of Geotechnical Engineering, Vol. 114, No. 4, pp. 491-498.
22. Kumar, J., and Rao, V.B.K.M. (2002). “Seismic bearing capacity factors for spread foundations” Geotechnique, Vol. 52, No. 2, pp. 79-88.
23. Kumar, J., and Rao, V.B.K.M. (2003). “Seismic bearing capacity of foundation on slopes” Geotechnique, Vol. 53, No. 3, pp. 347-361.
24. Kumar, J., and Kumar, N. (2003). “Seismic bearing capacity of rough footing on slopes using limit equilibrium” Geotechnique, Vol. 53, No. 3, pp. 363-369.
25. Meyerhof, G. G. (1951) “The Ultimate Bearing Capacity of Foundations” Geotechnique, Vol. 2, No. 4, pp. 301-331.
26. Meyerhof, G. G. (1953) “The Bearing Capacity of Foundations Under Eccentric and Inclined Loads” Proceeding Third International Conference on soil Mechanics and Foundation Engineering, Vol. 1, pp. 440-445.
27. Meyerhof, G. G. (1957). “The ultimate bearing capacity of foundations on slopes” Proc. 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 384-386.
28. Meyerhof, G. G. (1963) “Some Recent Research on the Bearing Capacity of Foundations” Canadian Geotechnical Journal, Vol. 1, No. 1, pp. 16-26.
29. Purkayastha, R. D., and Char, R. A. N. (1977) “Stability Analysis of Eccentrically Loaded Footings” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. 6, pp. 647-651.
30. Richard Jr., R., Elms, D. G. and Budhu, M. (1993) “Seismic bearing capacity and settlements of foundations” J. Geotech. Engrg., ASCE, Vol.119, No. 4, pp. 662-647.
31. Sarma, S. K. and Iossifelis, I. S. (1990) “Seismic bearing capacity factors of shallow strip footings” Geotechnique, Vol. 40, No. 2, pp. 265-273.
32. Soubra, A. –H. (1994), Discussion on “Seismic bearing capacity and settlements of foundations” by Richard Jr., Elms, D. G. and Budhu, M., J. Grotech. Engrg., ASCE, Vol. 120, No. 9, pp. 1632-1636.
33. Terzaghi, K. (1943) “Theoretical Soil Mechanics” John Wiley & Sons, pp. 118-143.
34. Vesic, A. S. (1973) “Analysis of Ultimate Loads of Shallow Foundations” Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol. 99, No. SM1, pp. 45-73.
35. Whitman,R. V. (1990) “Seismic design and behavior of gravity retaining walls” ASCE Specialty Conference : Design and Performance of Earth Retaining Structures, ASCE Geotechnical Special Publication No. 25, pp.817-842.
36. Yamamoto, K. (2010) “Seismic bearing capacity of shallow foundation near slopes using upper-bound method” Internation Journal of geotechnical Engineering, Vol. 4, No. 2, pp. 255-267.
37. Zhu, D. (2000) “The least upper-bound solution for the bearing capacity factors Nγ” Soil and Foundations, Vol. 40, No. 1, pp. 123-129.
38. 林煒傑 (2008),「以模型試驗探討加勁邊坡之耐震行為」,國立成功大學土木研究所碩士論文。
39. 康文瑋 (2007),「邊坡之基礎承載力分析」,國立成功大學土木研究所碩士論文。
40. 許哲旻 (2014),「承受坡腳開挖之邊坡上方基礎穩定性」,國立成功大學土木研究所碩士論文。
41. 黃柏勛 (2015),「承受基腳掏空之加勁提防穩定性」,國立成功大學土木研究所碩士論文。
42. 陳昱文 (2017),「邊坡之基礎承載力試驗與分析」,國立成功大學土木研究所碩士論文。
43. 王斈文 (2017),「探討加勁擋土牆地震中變位之震動台試驗」,國立成功大學土木研究所碩士論文。
44. 黃景川 (1998),「基礎工程」,三民書局。
45. 施國欽 (2010),「大地工程學(二)-基礎工程偏」,文笙書局。