簡易檢索 / 詳目顯示

研究生: 陳俊輝
Chen, Chun-Hui
論文名稱: 橫向等向性雙材料界面裂紋成長分析
Analysis of Delamination Propagation on the Interface of Dissimilar Transversely Isotropic Bimaterials
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 非等向性三維界面裂紋應力強度因子有限元素分析虛擬裂紋閉合法接觸脫層
外文關鍵詞: Anisotropic, Three-dimensional interface crack problem, Stress intensity factors, Finite element analysis, Virtual crack closure technique, Contact, Delamination
相關次數: 點閱:116下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討在三維界面裂紋問題中,雙層非等向性材料界面裂紋受熱負載作用情況下,裂紋前緣之破壞力學參數之分佈;並利用有限元素法配合虛擬裂紋閉合法計算非等向性雙材料界面裂紋之三維破壞力學參數,包括應變能釋放率、應力強度因子及相位角。其中,應變能釋放率可藉由裂紋尖端元素節點上的力量和位移計算出的裂紋閉合積分式疊加求得。另外,以史蹉公式為基礎理論,從所得之界面裂紋尖端的漸近應力場及漸近位移場與裂紋閉合積分式之理論關係,可求得以裂紋閉合積分式計算應力強度因子及相位角之代數式。由於界面裂紋尖端的奇異彈性應力場具有震盪的行為,因此應力強度因子之值亦會隨著所使用之長度單位而有震盪的行為,此震盪之特性會造成直接使用虛擬裂紋閉合法求解界面裂紋之應力強度因子的困難。對此問題,可藉由特定之材料特徵長度來無因次化震盪的應力強度因子,使其單位回歸至(應力)×(長度)1/2。此外,對於較特殊之界面裂紋問題,包含裂紋尖端發生大範圍接觸及裂紋面受到內壓力之情況,本研究亦提出專用的公式來計算其破壞力學參數。針對於本文所提出之破壞力學參數求解方法,首先透過與界面裂紋問題的理論解析解來比對驗證;而後,本文討論應用虛擬裂紋閉合法來分析半導體電子元件中之雙材料界面裂紋受熱負載情況下,界面裂紋脫層成長之問題。

    The problem of a three-dimensional interface crack between two anisotropic materials under thermomechanical load is investigated by using finite element method with the virtual crack closure technique. The fracture mechanics parameters, including the strain energy release rate, the stress intensity factors and phase angles along the interface crack front are obtained by using a numerical approach. In this approach, the crack closure integrals and the strain energy release rate are calculated from the nodal load and displacement solutions of the singular quarter-point crack-tip finite elements. Algebraic equations relating the crack closure integrals and the stress intensity factors are derived from the asymptotic displacement and stress fields around the interface crack tip, and is applied to determine the stress intensity factors and the corresponding phase angles. A complication in applying the VCCT directly to calculate the stress intensity factors for a bimaterial interface crack is that the results would depend on the size of the virtual crack extension. This is due to the oscillating behavior of the elastic singular stress field around the interface crack tip. The issue may be overcome by normalizing the stress intensity factors to a material characteristic length such that the stress intensity factors have a unit of (stress)×(length)1/2. In addition, variations of the equations for determining the fracture mechanics parameters are given for cases including large-scale contacting between interface crack faces and crack under inner pressure. Validation of the proposed approach is performed by comparing the numerically determined stress intensity factors for interface cracks to analytical solutions. The numerical approach is then applied to study the problems of microelectronic component containing interface corner crack fatigue growth under temperature cycling condition.

    摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究目的與方法 5 1.4 論文架構 6 第二章 理論基礎 8 2.1 史蹉公式 8 2.2 非等向性材料界面破壞力學參數 14 2.2.1 應力強度因子 14 2.2.2 界面裂紋應變能釋放率 22 2.3 裂紋尖端大範圍接觸下之破壞力學參數 27 2.4 三維奇異有限元素 32 2.5 裂紋面上受內壓之修正 40 2.6 界面裂紋疲勞成長 43 第三章 方法驗證 46 3.1 雙材料界面裂紋負載問題 46 3.2 界面裂紋發生大範圍接觸之問題 55 第四章 結果與討論 59 4.1 三維界面裂紋成長模擬之研究方法 59 4.2 雙橫向等向性材料之界面裂紋問題分析 61 4.3 氮化矽與聚醯亞胺間之界面裂紋問題分析 70 第五章 結論 77 參考文獻 79 附錄 87 自述 101

    [1] X. Wu, K. W. Paik and S. N. Bhandarkar, “To cut or not to cut: a thermomechanical stress analysis of polyimide thin-film on ceramic structures”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 18, pp. 150-153, 1995.
    [2] J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers”, International Journal of Solids and Structures, Vol. 33, pp. 65-78, 1996.
    [3] Z. Suo, “Singularities, Interface and cracks in Dissimilar Anisotropic Media”, Proceeding of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 427, pp. 331-358, 1990.
    [4] V. I. Mossakovskii and M. T. Rybka, “Generalization of the Griffith-Sneddon criterion for the case of a nonhomogeneous body”, Journal of Applied Mathematics and Mechanics, Vol. 28, pp. 1277-1286, 1964.
    [5] T.-C. Chiu and H.-C. Lin, “Analysis of stress intensity factors for three-dimensional interface crack problems in electronic packages using the virtual crack closure technique”, International Journal of Fracture, Vol. 156, pp. 75-96, 2009.
    [6] M. Nagai, T. Ikeda and N. Miyazaki, “Stress intensity factor analysis of an interface crack between dissimilar anisotropic materials under thermal stress using the finite element analysis”, International Journal of Fracture, Vol. 146, pp. 233-248, 2007.
    [7] S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Gostekhizdat, Moscow, 1950.
    [8] S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco, California, 1963.
    [9] A. N. Stroh, “Dislocations and cracks in anisotropic elasticity”, Phil. Mag. 3, pp. 625-646, 1958.
    [10] A. N. Stroh, “Steady state problems in anisotropic elasticity”, Journal of Mathematical Physics, Vol. 41, pp. 77-103, 1962.
    [11] J. D. Eshelby, W. T. Read and W. Shockley, Anisotropic elasticity with applications to dislocation theory, Acta Metallurgica, Vol. 1, pp. 251-259, 1953.
    [12] C. Hwu, “Fracture parameters for the orthotropic bimaterial interface cracks”, Engineering Fracture Mechanics, Vol. 45, pp. 89-97, 1993.
    [13] G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate”, Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957.
    [14] E. F. Rybicki and M. F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral”, Engineering Fracture Mechanics, Vol. 9, pp. 931-938, 1977.
    [15] K. N. Shivakumar, P. W. Tan and J. C. Newman, Jr., “A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies”, International Journal of Fracture, Vol. 36, pp. R43-R50, 1988.
    [16] I. S. Raju, “Simple formulas for strain-energy release rates with higher order and singular finite elements”, NASA/CR-1986-178186.
    [17] G. De Roeck and M. M. Abdel Wahab, “Strain energy release rate formulae for 3D finite element”, Engineering Fracture Mechanics, Vol. 50, pp. 569-580, 1995.
    [18] I. S. Raju, R. Sistla and T. Krishnamurthy, “Fracture Mechanics analyses for skin-stiffener debonding”, Engineering Fracture Mechanics, Vol. 54, pp. 371-385, 1996.
    [19] S. A. Fawaz, “Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front”, Engineering Fracture Mechanics, Vol. 59, pp. 327-342, 1998.
    [20] D. Xie and J. S. Biggers, “Strain energy release rate calculation for a moving delamination front of arbitrary shape based on virtual crack closure technique”, Part I: Formulation and validation, Engineering Fracture Mechanics, Vol. 73, pp. 771-785, 2006.
    [21] A. Miravete and M. A. Jimenez, “Application of the finite element method to prediction of onset of delamination growth”, Applied Mechanics Reviews, Vol. 55, pp. 89-106, 2002.
    [22] R. Krueger, “The virtual crack closure technique: history, approach and applications”, NASA/CR-2002-211628.
    [23] M. L. Williams, “The stresses around a fault or crack in dissimilar media”, Bulletin of the Seismological Society of America, Vol. 49, pp. 199-204, 1959.
    [24] P. P. L. Matos, R. M. McMeeking, P. G. Charalambides and M. D. Drory, “A method for calculating stress intensities in bimaterial fracture”, International Journal of Fracture, Vol. 40, pp. 235-254, 1989.
    [25] W. T. Chow and S. N. Atluri, “Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral”, Computational Mechanics, Vol. 16, pp. 417-425, 1995.
    [26] C. T. Sun and W. Qian, “The use of finite extension strain energy release rates in fracture of interfacial cracks”, International Journal of Solids and Structures, Vol. 34, pp. 2595-2609, 1997.
    [27] A. Agrawal and A. M. Karlsson, “Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique”, International Journal of Fracture, Vol. 141, pp. 75-98, 2006.
    [28] W. Qian and C. T. Sun, “Calculation of stress intensity factors for interlaminar cracks in composite laminates”, Composites Science and Technology, Vol. 57, pp. 637-650, 1997.
    [29] C. T. Sun and W. Qian, “Methods for calculating stress intensity factors for interfacial cracks between two orthotropic solids”, International Journal of Solids and Structures, Vol. 35, pp. 3317-3330, 1998.
    [30] C. Bjerken and C. Persson, “A numerical method for calculating stress intensity factors for interface cracks in bimaterials”, Engineering Fracture Mechanics, Vol. 68, pp. 235-246, 2001.
    [31] M. Comninou, “An overview of interface cracks”, Engineering Fracture Mechanics, Vol. 37, pp. 197-208, 1990.
    [32] K. S. Venkatesha, B. Dattaguru and T. S. Ramamurthy, “Finite element analysis of an interface crack with large crack-tip contact zones”, Engineering Fracture Mechanics, Vol. 54, pp. 847-860, 1996.
    [33] W. Qian and C. T. Sun, “A frictional interfacial crack under combined shear and compression”, Composite Science and Technology, Vol. 58, pp. 1753-1761, 1998.
    [34] J. Lee and H. Gao, “A generalized Comninou contact model for interface cracks in anisotropic elastic solids”, International Journal of Fracture, Vol. 67, pp. 53-68, 1994.
    [35] J. R. Rice, “Elastic fracture mechanics concepts for interfacial cracks”, Journal of Applied Mechanics, Vol. 55, pp. 98-103, 1988.
    [36] C. H. Wu, “Plane Anisotropic Themoelasticity”, Journal of Applied Mechanics, Vol. 51, pp. 724-726, 1984.
    [37] T. C. T. Ting, Anisotropic Elasticity; Theory and Applications, Oxford University Press, 1996.
    [38] W. Voigt, Lehrbuch der Kristallphysik, Leipzig, pp. 560, 1910.
    [39] K. A. Ingebrigtsen and A. Tonning, “Elastic surface waves in crystal”, Phys. Rev., Vol. 184, pp. 942-951, 1969.
    [40] D. M. Barnett and J. Lothe, “Synthesis of the sextic and the integral formalism for dislocations, Greens function and surfaces waves in anisotropic elastic solids”, Phys. Norv, Vol. 7, pp. 13-19, 1973.
    [41] K. C. Wu, “Stress intensity factor and energy release rate for interfacial cracks between dissimilar anisotropic materials”, Journal of Applied Mechanics, Vol. 57, pp. 882-886, 1990.
    [42] C. Dongye and T. C. T. Ting, “Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials”, Quart. Appl. Math., Vol. 47, pp. 723-734, 1989.
    [43] T. C. T. Ting, “Explicit solution and invariance of the singularities at an interface crack in anisotropic composites”, International Journal of Solids and Structures, Vol. 22, pp. 965-983, 1986.
    [44] J. Dundurs, “Edge bonded dissimilar orthogonal elastic wedges”, Journal of Applied Mechanics, Vol. 36, pp.650-652, 1969.
    [45] W. Qian and C. T. Sun, “A method for calculating the stress intensity factors for an interfacial crack between two anisotropic media”, submitted.
    [46] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws”, Journal of Basic Engineering, Transactions ASME, Vol. 85, pp. 528-534, 1963.
    [47] J. M. Snodgrass, D. Pantelidis, M. L. Jenkins, J. C. Bravman and R. H. Dauskardt, “Subcritical Debonding of Polymer/Silica Interfaces Under Monotonic and Cyclic Loading”, Acta Materialia, Vol. 50, pp. 2395-2411, 2002.
    [48] C. Hwu, “Explicit solutions for collinear interface crack problems”, International Journal of Solids and Structures, Vol. 30, No. 3, pp. 301-312, 1993.
    [49] T.-C. Chiu and H.-C. Lin, “On the homogenization of multilayered interconnect for interfacial fracture analysis”, IEEE Transactions on components and packaging technologies, Vol. 31, No. 2, pp. 388-398, Jun. 2008.
    [50] A. K. Gautesen and J. Dundurs, “The interface crack under combined loading”, Journal of Applied Mechanics, Vol. 55, pp. 580-586, 1988.
    [51] 朱書偉,聚醯亞胺與氮化矽薄膜界面之疲勞裂紋成長行為,碩士論文,國立成功大學,2010。
    [52] C. D. Hartfield, E. T. Ogawa, Y.-J. Park, T.-C. Chiu and H. Guo, “Interface reliability assessments for copper/low-k products”, IEEE Trans. Device Mater. Rel., Vol. 4, No. 2, pp. 129-141, Jun. 2004.
    [53] 賴宇聖,應用虛擬裂紋閉合法於非等向性材料界面裂紋問題,碩士論文,國立成功大學,2010。

    下載圖示 校內:2014-08-31公開
    校外:2014-08-31公開
    QR CODE