| 研究生: |
鄭閔升 Cheng, Min-Sheng |
|---|---|
| 論文名稱: |
無人飛行載具(UAV)機翼之竹纖維複合材料適用分析 Analysis of Bamboo Fiber Composite for Unmanned Aerial Vehicle (UAV) Wing |
| 指導教授: |
楊文彬
Young, Wen-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 無人機(UAV)機翼 、竹纖維 、複合材料 、ANSYS Workbench |
| 外文關鍵詞: | Unmanned Aerial Vehicle (UAV) wing, bamboo fiber, composite materials, ANSYS Workbench |
| 相關次數: | 點閱:65 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合材料在無人飛行載具(UAV)設計中具有重要作用,提供理想的強度和輕量化特性,從而推動飛機在性能和經濟性方面的顯著進展。
本論文旨在評估竹纖維複合材料在機翼蒙皮材料中的適用性,以提升UAV性能的潛在機會,本研究使用Creo Parametric軟體建立由蒙皮、泡沫芯材組成的機翼結構有限元素模型,並利用ANSYS軟體設定蒙皮材質分別為竹纖維複合材料(ALK-BF/Epoxy)、碳纖維複合材料(CRFP)和玻璃纖維複合材料(GRFP),機翼芯材材質設定為硬質泡沫芯材,複材疊層按照[0°/0°/0°]、[0°/45°/0°]、[0°/90°/0°] 的角度堆疊,並於機翼上設定適當的飛行負載,分析三種複材機翼在變形量和最大主應力的表現後,其結果顯示竹纖維複材在重量、總變形量及最大主應力方面均在合理範圍內,因此驗證了竹纖維複材可運用於小型UAV機翼,並在結構性能方面表現出良好的潛力,具有作為高性能材料的應用前景。
Composites play an important role in the design of unmanned aerial vehicles (UAVs), providing desirable strength and lightweight properties that drive significant advances in aircraft performance and economics.
This paper aims to evaluate the applicability of bamboo fiber composite materials in wing skin materials to improve the potential opportunities of UAV performance. This study uses Creo Parametric software to build a composite structure consisting of skin and foam core layers. Finite element model of the wing structure, and use ANSYS software to set the skin material to bamboo fiber composite material (ALK-BF/Epoxy), carbon fiber composite material (CRFP) and glass fiber composite material (GRFP), and the wing core material is set to rigid foam core material. The composite laminates are stacked at the angles of [0°/0°/0°], [0°/45°/0°], [0°/90°/0°] and appropriate angles are set on the wing. Flight load. After analyzing the performance of three types of composite wings in terms of deformation and maximum principal stress, the results show that the weight, total deformation and maximum principal stress of bamboo fiber composites are all within a reasonable range. Therefore, it is verified that bamboo fiber composite materials can be applied to small UAV wings, show good potential in terms of structural performance, and have application prospects as high-performance materials.
[1] Yuvraj, S. R., and P. Subramanyam. 2015 "Design and analysis of Wing of an ultra-light Aircraft." International journal of innovative research in science, engineering and technology 4 (2015): 78-85.
[2] Kumar, A. Ramesh, S. R. Balakrishnan, and S. Balaji. 2013 "Design of an aircraft wing structure for static analysis and fatigue life prediction." Int. J. Eng. Res. Technol 2.5 (2013): 1154-1158.
[3] Verma, A. K., Pradhan, N. K., Nehra, R., & Prateek. 2018 "Challenge and advantage of materials in design and fabrication of composite UAV". In IOP Conference Series: Materials Science and Engineering (2018, December) (Vol. 455, No. 1, p. 012005). IOP Publishing.
[4] 林暘倫. 2021 "應用於輕航機機翼之碳纖維複合材料層板修補強度與模擬分析比較之研究." 淡江大學航空太空工程學系碩士班學位論文 (2021): 1-87.
[5] Nurihan, O., et al. 2019 "The elastic properties of unidirectional bamboo fibre reinforced epoxy composites." Int. J. Recent Technol. Eng 8 (2019): 7187-7193.
[6] Anu Gupta, A., Ajit Kumar, A., Amar Patnaik, A., & Sandhyarani, S.2011 "Effect of Different Parameters onMechanical and ErosionWear Behavior of Bamboo Fiber Reinforced Epoxy. " International Journal of Polymer Science, (2011).
[7] Chung, Pei-Hsiang, Der-Ming Ma, and Jaw-Kuen Shiau. 2019 "Design, manufacturing, and flight testing of an experimental flying wing UAV." Applied Sciences 9.15 (2019): 3043.
[8] Kesseler, E., and W. J. Vankan. 2006 "Multidisciplinary design analysis and multi-objective optimisation applied to aircraft wing." (2006).
[9] Darwish, F. H., G. M. Atmeh, and Z. F. Hasan. 2012 "Design Analysis and Modeling of a General Aviation Aircraft." Jordan Journal of Mechanical & Industrial Engineering 6.2 (2012).
[10] Kumar, TS Vinoth, et al. 2015 "Static & dynamic analysis of a typical aircraft wing structure using Msc Nastran." Int. J. Res. Aeronaut. Mech. Eng 3 (2015): 1-12.
[11] Rajadurai, M., et al. 2017 "Optimization of ply orientation of different composite materials for aircraft wing." International Journal of Advanced Engineering Research and Science (IJAERS) 4.6 (2017).
[12] Shabeer, K. P., and M. A. Murtaza. 2013 "Optimization of aircraft wing with composite material." International Journal of Innovative Research in Science, Engineering and Technology 2.6 (2013).
[13] Das, Salu Kumar, and Sandipan Roy. 2018 "Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass fiber reinforced polymer." IOP conference series: Materials science and engineering. Vol. 402. No. 1. IOP Publishing, 2018.
[14] Ismail, Hanafi, S. Shuhelmy, and M. R. Edyham. 2002 "The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites." European Polymer Journal 38.1 (2002): 39-47.
[15] Phong, Nguyen Tien, et al. 2012 "Study on how to effectively extract bamboo fibers from raw bamboo and wastewater treatment." Journal of Materials Science Research 1.1 (2012): 144.
[16] Khalil, HPS Abdul, et al. 2012 "Bamboo fibre reinforced biocomposites: A review." Materials & Design 42 (2012): 353-368.
[17] Huang, Jyun-Kai, and Wen-Bin Young. 2019 "The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites." Composites Part B: Engineering 166 (2019): 272-283.
[18] Retrieved from https://bigfoil.com/afa015f1-ed85-42c4-84ee-3490b2b87f76_info.php
[19] Retrieved from http://airfoiltools.com/airfoil/details?airfoil=clarky-il
[20] Samal, Ashis Kumar Rao, T Eswara. 2016 "Analysis of stress and deflection of cantilever beam and its validation using ANSYS." J. Eng. Res. Appl. www. ijera. com 6 (2016): 119-126.