簡易檢索 / 詳目顯示

研究生: 林威宇
Lin, Wei-Yu
論文名稱: 高強度鋼筋混凝土柱構件遲滯模型之研究
Study on the Hysteretic Models of Reinforcement Concrete Columns Using High Strength Materials
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 125
中文關鍵詞: 高強度鋼筋混凝土遲滯迴圈柱構件破壞模式OpenSees
外文關鍵詞: High strength materials, Hysteretic behavior, Failure modes of Columns, OpenSees
相關次數: 點閱:160下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對高強度鋼筋混凝土柱構件,建立一套於不同破壞模式下之遲滯行為模擬方法,其中包含材料參數之計算與流程,用以檢視既有或新建之高強度鋼筋混凝土建築受反覆載重作用時,側向強度衰減的過程,同時提供作為動力分析中,定義遲滯消能行為的基礎。
    共蒐集了75座試體實驗數據做為模擬目標,為求提供模型之泛用性,試體材料強度及軸力為:混凝土抗壓強度介於67MPa至139MPa;縱向鋼筋降伏強度介於393MPa至744MPa;橫向鋼筋降伏強度介於341MPa至1424MPa;軸壓比介於0.07至0.62。並以ASCE/SEI 41-13提供之破壞模式準則為依據進行分類。撓曲強度使用輔助軟體NewRC-Mocur2020計算;剪力強度則參考高強度鋼筋混凝土結構設計手冊(第二版),進行部分調整後計算得。最終判斷為撓曲破壞試體31座、撓剪破壞試體25座、剪力破壞試體19座。此結果與實驗結果高度吻合。
    模擬遲滯行為使用開源軟體OpenSees建立模型,並以其資料庫中,Elwood開發之剪力極限狀態(Shear limit State)、LeBorgne開發之束縮極限狀態(Pinching Limit State)等概念,分別作為關鍵描述撓曲強度主控及剪力強度主控的側向力衰減過程。
    分析成果顯示,既使在廣泛的材料性質下,於遲滯行為之擬合有不錯之成果。在整體強度的表現中,以模擬結果與實驗值比值作為指標,分別對三種破壞模式試體進行統計,其中撓曲破壞試體:平均值為0.93、變異係數為0.13;撓剪破壞試體:平均值為1.02、變異係數為0.07;剪力破壞試體:平均值為0.92、變異係數為0.11。顯示本模型具備一定程度之可靠性。

    In this study, for reinforcement concrete columns using high strength materials, a hysteretic behavior simulation method under different failure modes was established, which could be used to examine the reversed loads of existing or new high-strength reinforced concrete buildings. Also, the process of lateral strength decay is provided as the basis for defining hysteretic energy dissipation behavior in dynamic analysis.
    The experimental data of 75 specimens were collected as the simulation target. The material strengths of the specimens show as below. The compressive strength of concrete was between 67MPa and 139MPa. The yielding strength of longitudinal bars was between 393MPa and 744MPa. The yielding strength of transverse bars was between 341MPa and 1424MPa; The axial compression ratio is between 0.07 and 0.62.
    Before starting hysteretic behavior simulation. The classification of failure modes should be conducted first. In this study, the method is based on the failure mode criteria provided by ASCE/SEI 41-13. Among it, the flexural strength is calculated using the program, NewRC-Mocur2020. The shear strength is calculated after partial adjustment with reference to the Design Manual for High-strength Reinforced Concrete Structures (Second Edition) provided by the National Earthquake Center (NCREE). In the end, there were classified in 31 flexural failure samples, 25 flexural shear failure samples, and 19 shear failure samples. This result is in good agreement with the experimental results.
    To simulate hysteresis behavior, the open-source software OpenSees is used to build a model, and the concepts such as Shear limit State developed by Elwood and Pinching Limit State developed by LeBorgne are used as key descriptions in the model. These two defined the lateral strength decay process in failure behavior of flexure and shear, respectively.

    摘要 I 致謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIII 第1章 緒論 1 1.1 動機與目的 1 1.2 研究內容與方法 3 第2章 文獻回顧 5 2.1 結構分析方法 5 2.1.1 常見之結構分析模型 5 2.1.1.1 塑鉸模型 5 2.1.1.2 遲滯模型 6 2.1.1.3 有限元模型 7 2.1.2 分析目標 8 2.2 柱構件破壞行為 9 2.2.1 撓曲破壞側向載重位移曲線 10 2.2.2 剪力破壞側向載重位移曲線 11 2.2.3 撓剪破壞側向載重位移曲線 15 2.2.4 柱縱向主筋之挫屈破壞 17 第3章 柱試體資料庫建立 28 3.1 柱試體之破壞模式判定 28 3.1.1 美國土木工程師學會ASCE/SEI 41-13 28 3.1.2 混凝土柱強度之計算 28 3.1.2.1 撓曲強度Mn計算 29 3.1.2.2 剪力強度Vn計算 31 3.2 高強度鋼筋混凝土資料庫 34 3.2.1 試體簡介 35 3.2.1.1 劉光晏等人[72]之研究 35 3.2.1.2 Frédéric Légeron and Patrick Paultre[73]之研究 35 3.2.1.3 Patrick Paultre and Frédéric Légeron等人[74]之研究 36 3.2.1.4 Sugano[75]之研究 37 3.2.1.5 Yan Xiao and Armen Martirossyan[76]之研究 37 3.2.1.6 張豐展[77]之研究 38 3.2.1.7 陳盈璋[4]之研究 39 3.2.1.8 黃冠傑[5]之研究 40 3.2.1.9 廖宛儀[78]與沈文成等人[6]之與研究 40 3.2.1.10 Yu-Chen Ou等人[79]之研究 41 3.2.1.11 Wen-Cheng Liao等人[80]之研究 42 3.2.1.12 Chiu Chien-Kuo等人[81]之研究 42 3.2.1.13 Yu-Chen Ou and Dimas P. Kurniawan[69]之研究 43 3.2.1.14 Yu-Chen Ou and Dimas P. Kurniawan[70]之研究 44 3.2.2 計算強度驗證 45 3.2.3 試體總結 47 第4章 分析方法 72 4.1 模型建構 73 4.1.1 基本架構 73 4.1.2 基本材料 74 4.1.2.1 梁柱物件 74 4.1.2.2 零長度物件 74 4.1.2.3 Popovic混凝土材料物件 74 4.1.2.4 遲滯材料物件 75 4.1.3 彈簧材料 75 4.1.3.1 縱向鋼筋滑移彈簧 75 4.1.3.2 挫屈彈簧 76 4.1.3.3 剪力彈簧 77 4.2 材料參數設定 80 4.2.1 高強度混凝土 80 4.2.2 鋼筋 81 4.2.3 「delta」參數 81 第5章 分析結果 91 5.1 遲滯迴圈形狀比較 91 5.1.1 撓曲破壞模式 91 5.1.1.1 低軸壓試體 91 5.1.1.2 中至高軸壓試體 92 5.1.1.3 超高軸壓試體 92 5.1.2 撓剪破壞模式 93 5.1.2.1 低軸壓試體 93 5.1.2.2 中至高軸壓試體 93 5.1.3 剪力破壞模式 94 5.1.3.1 低軸壓試體 94 5.1.3.2 中至高軸壓試體 94 5.2 強度峰值比較 95 第6章 結論與建議 114 6.1 結論 114 6.1.1 高強度鋼筋混凝土柱構件之破壞模式判定 114 6.1.2 高強度混凝土柱構件遲滯迴圈之擬合 114 6.2 建議 115 參考文獻 117 附錄 1 A.1 試體材料參數及軸力 A.1 A.2 模型擬合結果總圖 A.16

    [1] (財)国土開發技術研究センター,「建設省総合技術開發プロジェクト:鉄筋コンクリート造建築物之超軽量化‧超高層化技術の開發(New RC),平成四年度構造性能分科会報告書」,1993。
    [2] 王勇智、李宏仁、邱建國、吳子良、林克強、林敏郎、洪崇展、黃世建、廖文正、鄭敏元、歐昱辰、劉光晏、李翼安、沈文成、紀凱甯、莊勝智,「高強度鋼筋混凝土結構設計手冊」,中華民國結構工程學會,台北,2017 。
    [3] 李龍成、吳子良、林克強、林湫潢、苗勵青、鄭瑞濱、蔡江洋、李翼安、沈文程、紀凱甯、莊勝智,「高強度鋼筋混凝土結構施工手冊」,中華民國結構工程學會,台北,2017 。
    [4] 陳盈璋,「高強度鋼筋混凝土柱耐震圍束效應之研究」,國立臺灣大學碩士論文,台北,2011 。
    [5] 黃冠傑,「鋼筋混凝土柱耐震圍束之研究」,國立臺灣大學碩士論文,台北,2013。
    [6] 沈文成、黃世建、蔡東杞、黃銘弘,「高強度鋼筋混凝土柱耐震圍束行為之研究」,國家地震工程研究中心研究年度成果報告,台北,2014,164 頁。
    [7] 張宗豪,「高軸力下高強度鋼筋混凝土柱撓曲主控之側力位移曲線」,國立中興大學碩士論文,台中,2021。
    [8] 凌于哲,「鋼筋混凝土柱遲滯迴圈之模擬研究」,國立臺灣大學碩士論文, 2019。
    [9] Kuang-Yen Liu , Witarto Witarto and Kuo-Chun Chang, "Composed analytical models for seismic assessment of reinforced concrete bridge columns", Earthquake Engineering and Structural Dynamics, 2015.
    [10] ASCE/SEI 41-13, "Seismic Rehabilitation of Existing Buildings 41-13," American Society of Civil Engineers (ASCE), 2014, 518 pp.
    [11] 余沛涵、李宏仁、洪崇展,「新高強度鋼筋混凝土矩形斷面彎矩曲率分析程式之開發」,中華民國第15 屆結構工程及第5 屆地震工程研討會,2020,No.102
    [12] 高強度鋼筋混凝土結構設計手冊(第二版),國家地震工程研究中心,修訂中。
    [13] Kenneth John Elwood, Jack P. Moehle, "Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames", University of California, Berkeley, 2003.
    [14] Matthew Ronald LeBorgne, B.S.; M.S., "Modeling the Post Shear Failure Behavior of Reinforced Concrete Columns", The University of Texas at Austin, 2012.
    [15] ACI Committee 363, "363R-10 Report on High-Strength Concrete", American Concrete Institute, Farmington Hills, MI, pp.2-3, 2010
    [16] Federal Emergency Management Agency (FEMA) 273, "NEHRP Guidelines for the Seismic Rehabilitation of Buildings", Federal Emergency Management Agency, Washington D.C., 1997.
    [17] American Society of Civil Engineers (ASCE), "Seismic Rehabilitation of Existing Buildings ASCE/SEI 41–06", American Society of Civil Engineers, Reston, Virginia, 2007.
    [18] Paulay T., Priestley MJN., "Seismic Design of Reinforced Concrete and Masonry Buildings", John Wiley and Sons Inc, New York, 1992.
    [19] Sung YC, Liu KY, Su CK, Tsai IC, Chang KC. "A study on pushover analysis of reinforced concrete columns", Structural Engineering and Mechanics 2008, 21(1):35–52.
    [20] Aschheim M., Moehle JP., "Shear strength and deformability of reinforced concrete bridge columns subjected to inelastic cyclic displacement", Earthquake Engineering Research Center, University of California, Berkeley, Report No. UCB/EERC-92/04, 1992.
    [21] 宋裕祺、蔡益超,「鋼筋混凝土建築物耐震能力詳細評估SERCB-理論背景與系統操作」,中國土木水利工程學會、中華民國結構工程學會,2017。
    [22] Chung LL, Yang YS, Lien KH, Wu LY, "In-situ experiment on retrofit of school buildings by adding sandwich columns to partition brick walls", Earthquake Engineering and Structural Dynamics, 2013.
    [23] Elwood KJ, Moehle JP, "Drift capacity of reinforced concrete columns with light transverse reinforcement", Earthquake Spectra, 2005.
    [24] Elwood KJ, Moehle JP. "Axial capacity model for shear-damaged columns", ACI Structural Journal, 2005.
    [25] American Concrete Institute (ACI) Committee 318, "Building Code Requirements for Structural Concrete (ACI 318–11) and Commentary", American Concrete Institute: Farmington Hills, Michigan, 2011.
    [26] 邱聰智、鐘立來、塗耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,「臺灣結構耐震評估與補強技術手冊(TEASPA V4.0)」,國家地震研究中心,2020。
    [27] Takeda T, Sozen MA, Nielson NN, "Reinforced concrete response to simulate earthquakes", Journal of Structural Division ASCE, 1970
    [28] Dowell, R. K., Seible, F., and Wilson, E.L., "Pivot Hysteresis Model for Reinforced Concrete Members", ACI Structural Journal, Vol.95, No.5., 1998.
    [29] Clough RW, Johnston SB, "Effect of Stiffness Degradation on Earthquake Ductility Requirements", Proceedings of Japan Earthquake Engineering Symposium, Tokyo, Japan, 1966.
    [30] Bouc, R., "Forced Vibration of Mechanical Systems with Hysteresis", Proceedings of the Fourth Conference on Nonlinear Oscillation, Prague, Czechoslovakia, 1971.
    [31] Wen, Y.K., "Method for Random Vibration of Hysteretic Systems", Journal of Engineering Mechanics, ASCE, Vol. 102, No.2, pp.249-263, 1976.
    [32] Baber TT, Noori MN, "Random vibration of degrading, pinching systems", Journal of Engineering Mechanics, 1985
    [33] Baber, T. T., and Noori, M.N., "Modeling general hysteresis behavior and random vibration applications", Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108, No.04, pp.411-420, 1986.
    [34] Otani S, Sozen MA. Behavior of Multistory Reinforced Concrete Frames during Earthquakes. Structural Research Series No.392, University of Illinois: Urbana, 1972.
    [35] Morita A, Kaku T., "Slippage of reinforcement in beam-column joint of reinforced concrete frame", Proceedings of 8th World Conference on Earthquake Engineering, San Francisco, 1984.
    [36] Saatcioglu M, Alsiwat JM, Ozcebe G., "Hysteretic behavior of anchorage slip in R/C members", Journal of Structural Engineering, ASCE, 1992
    [37] Sezen H, Moehle JP, "Bond-slip behavior of reinforced concrete members", Proceedings of FIB Symposium on Concrete Structures in Seismic Region, CEB-FIP. Athens, Greece, 2003
    [38] Filippou FC, Popov EP, Bertero VV. Analytical studies of hysteretic of R/C joints. Journal of Structural Engineering, ASCE 1986.
    [39] Hawkins NM, Lin I, Ueda T, "Anchorage of reinforcing bars for seismic forces", ACI Structural Journal, 1987.
    [40] Eligehausen R, Popov EP, Bertero VV, "Local bond stress-slip relationships of deformed bars under generalized excitations", Earthquake Engineering Research Center, University of California: Berkeley, California, Report No. UCB/EERC-83/23, 1983.
    [41] Elwood KJ, Eberhard MO, "Effective stiffness of reinforced concrete columns", ACI Structural Journal, 2009
    [42] Gomes A, Appleton J, "Nonlinear cyclic stress–strain relationship of reinforcing bars including buckling", Engineering Structures, 1997.
    [43] Dhakal R, Maekawa K, "Modeling for post yield buckling of reinforcement", Journal of Structural Engineering, 2002.
    [44] Dodd L, Restrepo-Posada J, "Model for predicting cyclic behavior of reinforcing steel" ,Journal of Structural Engineering, 1995.
    [45] Berry MP, Eberhard MO, "Practical performance model for bar buckling", Journal of Structural Engineering, ASCE, 2005.
    [46] Shen, W. C., Hwang, S. J., Li, Y. A., Weng, P. W., and Moehle, J. P., "Force Displacement Model for Shear-Critical Reinforced Concrete Columns", ACI Structural Journal, Vol. 118, No. 1, 2021, pp. 241-249.
    [47] ACI Committee 318, "Building Code Requirement for Structural Concrete (ACI 318-14)", American Concrete Institute, 2014.
    [48] MacGregor, J. G., "Reinforced Concrete: Mechanics and Design. 3rd Edition", Englewood Cliffs, NJ: Prentice Hall Inc, 1997.
    [49] Hwang, S. J., and Lee, H. J., "Strength Prediction for Discontinuity Regions by Softened 18 Strut-and-Tie Model", Journal of Structural Engineering, ASCE, Vol. 128, No. 12, 2002, pp. 1519-1526.
    [50] Hwang, S. J., Tsai, R. J., Lam, W. K., and Moehle, J. P., "Simplification of Softened 21 Strut-and-Tie Model for Strength Prediction of Discontinuity Regions", ACI Structural Journal, Vol. 114, No. 5, 2017, pp. 1239-1248.
    [51] Zhang L. X. B., and Hsu, T. T. C., "Behavior and Analysis of 100MPa Concrete Membrane Elements", Journal of Structural Engineering, ASCE, Vol. 124, No. 1, 1998, pp. 24-34.
    [52] 李宏仁、黃世建,「鋼筋混凝土結構不連續區域之剪力強度評估-軟化壓拉桿模型簡算法之實例應用」,結構工程,第十七卷,第四期, 2002 年,第 53-70 頁。
    [53] Paulay, T., and Priestley, M. J. N., "Seismic Design of Reinforced Concrete and Masonry 24 Buildings", Wiley, New York, 1992, 744 pp.
    [54] Li, Y. A., Weng, P. W., and Hwang, S. J., "Seismic Performance of RC Intermediate Short Columns Failed in Shear", ACI Structural Journal, Vol. 116, No. 3, 2019, pp. 195-206.
    [55] Priestley, M. J. N., Seible, F., and Calvi, G. M., "Seismic Design and Retrofit of Bridges", Wiley, New York, 1996, 704 pp.
    [56] Berry, M. P., "Estimating Flexural Damage in Reinforced Concrete Columns", Master’s thesis, Dept. of Civil and Environmental Engineering, Univ. of Washington, Seattle, 2003, 157 pp.
    [57] Sawyer, H. A., "Design of concrete frames for two failure states", Proc., Int. Symposium on the Flexural Mechanics of Reinforced Concrete, ASCE-ACI, Miami, 1964, pp.405-431.
    [58] Corley, W. G., "Rotational capacity of reinforced concrete beams", J. Struct. Div. ASCE, 92(5), 1966, pp.121-146.
    [59] Priestley, M. J. N., and Park, R., "Strength and ductility of concrete bridge columns under seismic loading", ACI Struct. J., 84(1), 1987, pp.61-76.
    [60] Priestley, M. J. N., Seible, F., and Calvi, G. M., "Seismic design and retrofit of bridges", Wiley, New York, 1996.
    [61] Berry, M., Parrish, M., and Berry, M., "PEER Structural Performance Database User's Manual (Version 1.0)", University of California, Berkeley, 2004, 38 pp.
    [62] 國家實驗研究院地震工程研究中心,「校舍結構耐震評估與補強技術手冊第三版」,台北,2013。
    [63] Lee, H.-J. Lai, Y.-L. Chen, C.-W. and Tao, C.-C., "Behavior and modeling of high-strength concrete tied columns under axial compression", Journal of the Chinese Institute of Engineers, pp. 353-365, 2018.
    [64] Mander, J. B. Priestley, M. J. N. and Park, R., "Theoretical Stress‐Strain Model for Confined Concrete, " Journal of Structural Engineering, ASCE, V. 114, No. 8, 1988, pp. 1804-1826.
    [65] ACI Innovation Task Group 4, "Report on Structural Design and Detailing for High Strength Concrete in Moderate to High Seismic Applications. (ITG-4.3R-07)", American Concrete Institute, 2007.
    [66] Wei-Hsiu Hu, Wen-Cheng Liao, "Study of prediction equation for modulus of elasticity of normal strength and high strength concrete in Taiwan", Journal of the Chinese Institute of Engineers, 2020.
    [67] Paultre, P., and F. Légeron, "Confinement Reinforcement Design for Reinforced Concrete Columns", Journal of Structural Engineering, ASCE 134, 2008.
    [68] ACI Committee 318, "Building Code Requirement for Structural Concrete (ACI 318-19)," American Concrete Institute, 2019.
    [69] Yu-Chen Ou and Dimas P. Kurniawan, "Shear Behavior of Reinforced Concrete Columns with High-Strength Steel and Concrete", ACI structural Journal, No. 112-S04, 2015.
    [70] Yu-Chen Ou and Dimas P. Kurniawan, " Effect of Axial Compression on Shear Behavior of High Strength Reinforced Concrete Columns", ACI structural Journal, No. 112-S19, 2015.
    [71] Ou, Y. C., Alrasyid, H., and Nguyen, V. B. N., "Minimum Shear Reinforcement for Columns with High-Strength Reinforcement and Concrete", Journal of Structural Engineering, ASCE, V. 2, No. 147, 2021.
    [72] 劉光晏、宋裕祺、張國鎮,「應用高強度鋼筋與高強度混凝土於橋墩耐震 設計之可行性研究」,結構工程 第二十九卷 第三期 第 5‐25 頁,2014年。
    [73] Frédéric Légeron, Patrick Paultre, "Behavior of High-Strength Concrete Columns under Cyclic Flexure and Constant Axial Load", ACI structural Journal, No. 97-S62, 2000.
    [74] Patrick Paultre, Frédéric Légeron, Daniel Mongeau, "Influence of Concrete Strength and Transverse Reinforcement Yield Strength on Behavior of HighStrength Concrete Columns", ACI structural Journal, No. 98-S47, 2001.
    [75] Shunsuke Sugano, "Seismic Behavior of Reinforced Concrete Columns which Used Ulrea-High-Strength Concrete", Elsevier Science Ltd, No.1383, 1996.
    [76] Yan Xiao, Armen Martirossyan, "Seismic Performance of High-Strength Concrete Columns", Journal of Structural Engineering, 1998.
    [77] 張豐展,「高強度鋼筋混凝土柱圍束效應研究」,國立臺灣大學碩士論文,台北,2010 。
    [78] 廖苑儀,「普通強度鋼筋混凝土柱耐震圍束之研究」,國立臺灣大學碩士論文,台北,2014 。
    [79] Yu-Chen Ou, Harun Alrasyid, Zachary B. Haber, and Hung-Jen Lee, "Cyclic Behavior of Precast High-Strength Reinforced Concrete Columns", ACI structural Journal, No. 112-S69, 2015.
    [80] Wen-Cheng Liao, Wisena Perceka, Michael Wang, "Experimental study of cyclic behavior of high-strength reinforced concrete columns with different transverse reinforcement detailing configurations", Engineering Structures 153, 2017.
    [81] Chiu Chien-Kuo, Sugianto Stevena, Liao Wen-I, Ho Chin-En, "Crack-based damage quantification for shear-critical HSRC column members using piezoceramic transducers", Engineering Structures 201, 2019.
    [82] Popovics, S.," A numerical approach to the complete stress strain curve for concrete", Cement and concrete research, 3(5), pp.583-599, 1973.
    [83] Foster, S. J., Gilbert, R. I., "The design of nonflexural members with normal and high-strength concretes", Structural Journal, V. 93, No. 1, 1996, pp. 3-10.
    [84] 王柄雄,「鋼筋混凝土橋柱之新平滑型遲滯模型與容量位移反應譜」,國立臺灣大學博士論文,台北,2017。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE