簡易檢索 / 詳目顯示

研究生: 張書淯
Chang, Shu-Yu
論文名稱: 即時光學色散偵測與補償於超快雷射脈衝壓縮系統
Real-time Optical Dispersion Estimation and Compensation for Ultrafast Laser Compression System
指導教授: 張家源
Chang, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 光學色散多光子激發螢光顯微術頻率光學解析開關可調式聚焦鏡現場可程式化邏輯閘陣列
外文關鍵詞: group delay dispersion, frequency resolved optical gating, deformable mirror, field programmable gate array, multiphoton excitation fluorescence microscopy
相關次數: 點閱:123下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超快雷射系統中光學色散會使雷射脈衝寬度變寬,理論上脈衝的瞬時功率也會下降,在非線性光學中例如多光子激發螢光顯微術應用上有嚴重影響,且光學色散在不同的系統上可能存在著動態變化,在不確定系統上的光學色散量值下,本文在不只是靜態的光學色散干擾下,連動態的情況也可以將光學色散中的二階項(group delay dispersion,GDD)做修正,並應用在實驗室自製多光子激發螢光顯微術(multiphoton excited fluorescence microscopy,MPEFM)中。
    本文主要所使用的脈衝量測技術為頻率光學解析開關(frequency resolved optical gating,FROG),在GRENOUILLE (grating-eliminated no-nonsense observation of ultrafast incident laser light e-fields)架構下以一個脈衝激發二倍頻晶體,激發後的時頻圖(spectrogram)資訊成像在CMOS相機上,由DOES (direct optical-dispersion estimation by spectrogram)演算法在現場可程式化邏輯閘陣列(field programmable gate array,FPGA)分析GDD,而脈衝補償技術為可調式聚焦鏡(deformable mirror,DM)脈衝壓縮器,在FPGA中使用PI控制器(proportional integral controller)在每次量測過後可計算下一步的DM須執行的修正量,在多次控制器迴圈的執行下將GDD收斂使脈衝達到轉換極限下的狀態,補償後脈衝雷射導入MPEFM系統,在靜態光學色散補償與動態光學色散補償等實驗中控制器迴圈以100 Hz的速度補償下,平均花費50 ms 即可將脈衝補償至轉換極限下,而多光子影像強度可提升至逼近理論極限的1.3~1.4倍。

    The optical dispersion effect in ultrafast pulse laser systems broadens the laser pulse duration and reduces the theoretical peak power. The present study proposes an adaptive ultrashort pulse compressor for compensating the optical dispersion using a direct optical-dispersion estimation by spectrogram (DOES) method. The DOES has fast and accurate computation time which is suitable for real time controller design. In the proposed approach, the group delay dispersion (GDD) and its polarity are estimated directly from the delay marginal of the trace obtained from a single-shot frequency-resolved optical gating (FROG). The estimated GDD is then processed by a closed-loop controller, which generates a command signal to drive a linear deformable mirror as required to achieve the desired laser pulse compression. The dispersion analysis, control computation, and deformable mirror control processes are implemented on a single field programmable gate array (FPGA). It is shown that the DOES dispersion computation process requires just 0.5 ms to complete. Moreover, the proposed pulse compressor compensates for both static dispersion and dynamic dispersion within five time steps when closed-loop controller is performed at a frequency of 100 Hz. The experimental results show that the proposed pulse compressor yields an effective fluorescence intensity improvement in a multiphoton excited fluorescence microscope (MPEFM).

    摘要 i Extending Abstract ii 致謝 ix 目錄 x 圖目錄 xii 表目錄 xv 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-3研究動機 4 1-4論文架構 5 第二章 脈衝雷射量測系統 6 2-1雷射光學時域色散 6 2-2 雷射自相關干涉技術 7 2-2-1 強度式自相關干涉儀 8 2-2-2干涉式自相關干涉儀 9 2-2-2-1 干涉式自相關曲線理論模擬 10 2-2-2-2 干涉式自相關實驗 11 2-3基於光學時頻圖解析光學色散技術 15 2-3-1 FROG原理 15 2-3-2 PCGPA演算法 19 2-3-3 基於PCGPA演算法下FROG實驗結果 23 2-3-3-1校正與量測 23 2-3-3-2於雙光子吸收偏差值於色散極性評估 32 2-3-4 DOES原理 35 2-3-5 DOES速度提升與實驗結果 37 第三章 雷射脈衝壓縮系統 41 3-1 稜鏡式雷射脈衝壓縮系統 41 3-1-1 原理推導 42 3-1-2 實驗結果分析 45 3-2 基於可調變式聚焦鏡之雷射脈衝壓縮系統 47 3-2-1 可調變式聚焦鏡控制器設計 47 3-2-2 模擬與實驗結果分析 51 第四章 快速雷射脈衝補償與整合應用 56 4-1 FROG結合CMOS相機於DOES演算法 56 4-2整合可調變式聚焦鏡與DOES技術之系統架構 59 4-3基於FPGA之PI回饋控制器 63 4-4系統效能與實驗分析100 Hz補償速度量測 65 4-5靜態與動態干擾補償實驗結果 68 4-5-1 靜態干擾補償實驗結果 68 4-5-2 動態干擾補償實驗結果 72 第五章 結果與討論 75 5-1結果與討論 75 5-2未來展望 77 參考文獻 78 附錄 83

    1. M. Göppert‐Mayer, “Elementary processes with two quantum transitions,” Ann. Phys. 18(78), 466479 (2009).
    2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science. 248(4951), 7376 (1990).
    3. W. R. Zipfel, R. M. Williams, and W. W. Webb,” Nonlinear magic: multiphoton microscopy in the biosciences,” Nat Biotechnol. 21(11), 13691377 (2003).
    4. P. J T. Wang and C. Xu, “Three-photon neuronal imaging in deep mouse brain,” Optica 7(8), 947960 (2020).
    5. S. V. Plotnikov et al., “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt., 13(4), 044018 (2008).
    6. L. Perrin, B. Bayarmagnai, and B. Gligorijevic, “Frontiers in intravital multiphoton microscopy of cancer,” Cancer Rep. 3(1), e1192 (2020).
    7. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
    8. R. R. Gattass, and E. Mazur, “Femtosecond Laser Micromachining in Transparent Materials,” Nat. Photon. 2, 219–225 (2008).
    9. J. Winter, M. Spellauge, J. Hermann, C. Eulenkamp, H. P. Huber, H. P. Huber, M. Schmidt, and M. Schmidt, “Ultrashort single-pulse laser ablation of stainless steel, aluminium, copper and its dependence on the pulse duration,” Opt. Express 29(10), 14561–14581 (2021).
    10. S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Ultrashort pulsed laser backside ablation of fused silica,” Opt. Express 29(15), 23477–23486 (2021).
    11. T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express 26(21), 27221–27236 (2018).
    12. H. P. Weber, “Method for Pulsewidth Measurement of Ultrashort Light Pulses Generated by Phase-Locked Lasers using Nonlinear Optics,” J. Appl. Phys. 38(5), 22312234 (1967)
    13. J. A. Armstrong, “MEASUREMENT OF PICOSECOND LASER PULSE WIDTHS,” Appl. Phys. Lett. 10(1), 1618 (1967).
    14. J-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24(9), 12701282 (1985).
    15. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 11011111 (1993).
    16. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
    17. P. O'Shea, S. Akturk, M. Kimmel, and R. Trebino, “Practical issues in ultra-short-pulse measurements with 'GRENOUILLE',” Appl. Phys. B 79, 683-691 (2004).
    18. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792794 (1998).
    19. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004).
    20. C. A. Farfan, J. Epstein, and D. B. Turner, “Femtosecond pulse compression using a neural-network algorithm,” Opt. Lett. 43(20), 5166–5169 (2018).
    21. G. Genty, L. Salmela, J.M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, and S. K. Turitsyn, “Machine learning and applications in ultrafast photonics,” Nat. Photonics 15(2), 91–101 (2021).
    22. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    23. S. Akturk, X. Gu, M. Kimmel, and Rick Trebino, “Extremely simple single-prism ultrashort-pulse compressor,” Opt. Express. 14(21), 1010110108 (2006).
    24. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
    25. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22(23), 1793–1795 (1997).
    26. A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    27. M. E. Durst, A. Turcios, C. Laurence, and E. Moskovitz, “Dispersion compensation by a liquid lens (DisCoBALL),” Appl. Opt. 58(2), 428–435 (2019).
    28. A. Straub, M. E. Durst, and C. Xu, “High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup,” Biomed. Opt. Express 2(1), 80–88 (2010).
    29. J. B. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Appl. Opt. 36(1), 397–401 (1997).
    30. J.-C. Chang, S.-Yu Chang, Yu-C. Wu, C.-Y. Chang, “Fast and direct optical dispersion estimation for ultrafast laser pulse compression,” Rev. Sci. Instrum. 92(11), 113702 (2021).
    31. T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett. 25(16), 1156–1158 (2000).
    32. S. Tiwari, A. Dixit and P. C. Pandey, “Temperature-based dispersion compensating ability of a photonic crystal fiber,” Opt. Eng. 61(1) 016105 (2022).
    33. K. Stankevičiūtė, M. Vengris, S. Melnikas, S. Kičas, R. Grigonis, and V. Sirutkaitis, “Tuning characteristics of femtosecond optical parametric oscillator with broadband chirped mirrors,” Opt. Eng. 54(12), 126111 (2015).
    34. M. Hippke, “Interstellar communication: Short pulse duration limits of optical SETI,” J Astrophys Astron 39(6), 74 (2018).
    35. M. Bouhadda, F. M. Abbou, M. Serhani, F. Chaatit, A. Abid and A. Boutoulout, “Temporal pulse broadening due to dispersion and weak turbulence in FSO communications,” Optik 200, 163327 (2020).
    36. K. Sunilkumar, N. Anand, S. K. Satheesh, K. K. Moorthy, and G. Ilavazhagan, “Enhanced optical pulse broadening in free-space optical links due to the radiative effects of atmospheric aerosols,” Opt. Express 29(2), 865–876 (2021).
    37. C.-Y. Chang, L.-C. Cheng, H.-W. Su, Y. Y. Hu, K.-C. Cho, W.-C. Yen, C. Xu, C. Y. Dong, and S.-J. Chen, “Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy,” Biomed. Opt. Express 5(6), 1768–1777 (2014).
    38. J.-N. Yih, Y. Y. Hu, Y. D. Sie, L.-C. Cheng, C.-H. Lien, and S.-J. Chen, “Temporal focusing-based multiphoton excitation microscopy via digital micromirror device,” Opt. Lett. 39(11), 3134–3137 (2014).
    39. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    40. E. Papagiakoumou, E. Ronzitti, and V. Emiliani, “Scanless two-photon excitation with temporal focusing, ” Nat Methods. 17(6), 571-581 (2020).
    41. E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30(13), 1686–1688 (2005).
    42. Coherent, specification of Chameleon Ultra series, from: https://www.coherent.com/lasers/oscillators/chameleon-ultra
    43. IDS, specification of UI-2250 CCD camera, from: https://www.1stvision.com/cameras/models/IDS-Imaging/UI-2250SE
    44. OKO Tech, specification of 39-ch linear deformable mirror for ultrafast optics, from: http://www.okotech.com/passports
    45. Analog Devices, specification of Digital to analog converter AD5380, from: https://www.analog.com/en/products/ad5380.html#product-overview
    46. IDS, specification of UI-3370 CMOS camera, from: https://en.ids-imaging.com/store/ui-3370cp-rev-2.html

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE