| 研究生: |
林森鴻 Lin, Sen-Hung |
|---|---|
| 論文名稱: |
代謝系統動力與熱力模型之建構 Kinetic and Thermodynamic Modeling of Metabolic Systems |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 代謝 、自由能微擾法 、代謝控制 |
| 外文關鍵詞: | metabolic, free energy perturbation, metabolic control |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多生物科技與環保科技中,如胰島素之製造、人體血液內葡萄糖代謝量之判定、酵素對污染物進行共價鍵結之環保應用上等,都與系統代謝息息相關。截至目前為止,這方面研究工作大都以實驗統計試誤法為主,往復調整實驗步驟以使代謝量符合預定需求,然而目前尚無完整理論模型及模擬流程可供應用,而電腦化特性分析工具亦正是目前代謝系統研發與應用所缺乏的。因此為了能夠快速化及精確化地掌握代謝特性並提高系統的代謝效率及分析時效,有必要建構一套完備且可定量分析的代謝理論模型及模擬程序。因此本研究以人體血糖代謝系統為例,模擬葡萄糖在人體血液中之反應機制,建構一套完整的代謝理論、模擬程序及電腦化的估算系統。
本研究以微觀分子力學模型為基礎,探討代謝反應過程之反應機制與人體血糖代謝疾病之診斷及給定代謝量下酵素最低成本之求取等應用為主題,並以此建構一套完整的代謝系統理論模型。本文首先利用分子間作用力場估算溶質所需克服之活化能及反應位能曲面,利用能量最小化法以估算反應態、產物態及反應路徑。接著以自由能微擾法推估自由能變化及代謝反應常數,以微觀角度分析系統代謝反應之物理規則。再根據反應常數、反應路徑及Michaelis-Menten來建構動態反應方程以求解系統之代謝量及通量並推估相關代謝控制係數,以完成代謝系統反應過程中之定量分析準則。最後利用本理論模型,以反應代謝量與疾病臨界值判斷人體血液內葡萄糖代謝異常所引發之代謝性疾病及利用代謝控制理論推估反應所需酵素最低成本等應用上。
由本文所建立之分子間作用力場推估代謝反應常數並利用反應常數、反應路徑及Michaelis-Menten方程建構動態方程推估代謝量及通量,所得結果與文獻實驗資料相互比對之結果,平均誤差皆落於10%內,證實本文所提之理論模型確實可行。反應常數,代謝量及通量之取得若經由本文之理論模型進行推估可取代傳統繁雜的實驗方法及經驗值法。此外本研究所建構之模型應用於人體血糖代謝性疾病之診斷及代謝反應酵素最低成本之求取上,證實本理論模型之實用性,未來更可將該套理論推廣於其他各種生物技術,醱酵工程等應用。
The biology and environment process technology are related to metabolism closely, example of the manufacture of insulin, the irregular metabolism of blood sugar estimated in human body, the enzyme bond with pollutants covalently for environment protection. Traditionally, the research about metabolic engeneering is done by using trial-error method and changing influentical factor, but this will make the metabolic process multifarious and metabolic efficiency won’t be promoted. In oreder to promoted the efficiency of the metabolic system and characterize the metabolic reaction mechanism, this project will finally estabolish a comprehensive and computational simulation process for metabolic system.
The paper will establish a metabolic kinetic and thermodynamic model that can be applied to the metabolite measurement for diagnosing the disease about blood sugar in human body and economize the use of enzyme for metabolic reaction. First, the potential energy surface is established by molecular forcefield and the reaction pathway is obtained by minimum energy method. Secondly, the free energy perturbation method will be used to estimate the key metabolic parameters. Finally, the amount of metabolite and metabolic flux are obtained by solving the dynamics reaction equations. The comprehensive model will integrate all relative parameters and discuss the physical meaning and kinetics behaviors. Then establish the metabolic pathway algorithm to estimate the quanity of metabolite for characterize the reaction mechanism and analytical rule. The results will then be further verified by experimental data.
Good agreements between the computed solutions and experimental data in the literature indicate the proposed theory is feasible. The key metabolic parameter can be obtained from examples presented in the paper without multifarious experiment steps. In the future, the theory can be popularized to other application, such as fermentation engineering, bio-examination, etc.
1.Dietmar, J., Montse, B., Josep, J., Centerlles, Judit, O. and Marta, C., “Application of Metabolic Ccontrol Analysis to Study of Toxic Effect of Copper in Muscle Glycolsis,” FEBS Letters, Vol. 445, pp. 44-148, 1999.
2.Daniel, L., Severance, Jonathan, W.E. and William, L.J., “Generalized Alteration of Structure and Parameters: A New Method for Free- Energy Perturbations in Systems Containing Flexible Degrees of Freedom,” Journal of Computational Chemistry, Vol. 16, No. 3, pp. 311-327, 1995.
3.Ehlde, M. and Zacchi, G., “A General Formalism for Metabolic Control Analysis,” Chemical Engineering Science, Vol. 52, pp. 2559 -2606, 1997.
4.Galazz, J.L. and Bailey, J.E., “Fermentation Pathway Kinetics and Metabolic Flux Control in Suspended and Immobilized Saccharomyces Cerevisiae,” Enzyme and Microbial Technology, Vol. 12, pp. 162-172, 1990.
5.Gert, D.B. and Kurt, V.M., Introduction to Molecular Dynamics and Chemical Kinetics, John Wiley & Sons, 1996.
6.Gerthard, H., “Calculation of Free-Energy Difference from Computer Simulation of Initial and Final States,” Journal of Chemical Physics, Vol. 105, pp. 2004-2010, 1996.
7.Giersch, C.,“Control Analysis of Metabolic Network.Ⅱ. Total Differentials and General Formulation of The Connectivity Theorems,” European Journal of Biochemistry, Vol. 174, pp. 515-519, 1988.
8.Glasstone, S., Laidler, J.K. and Eyring, H., The Theory of Rate Process, McGraw-Hill, New York, 1941.
9.Herinrich, R. and Rapoport, T.,“A Linear Steady State Treatment of Enzymatic Chains. General Properties Control and Effector Strength,” European Journal of Biochemistry, Vol. 42, pp. 89-95, 1974.
10.Hopfinger, A.J., Conformational Properties of Macromolecules, New York: Academic Press, 1973.
11.James, C.L. and Javier, D., “Advanced in Metabolic Control Analysis,” Biotechnology Progress, Vol. 9, pp. 221-233, 1993.
12.Mavrovouniotis, M.L.,“Estimation of Standard Gibbs Energy Changes of Bioinformations,” Journal of Biological Chemistry, Vol. 266, pp. 1440-1445, 1991.
13.Mayram, B., “A Novel Method for Determining Kinetic Parameters of Dissociating Enzyme Systems,” Analytical Biochemistry, Vol. 264, pp. 8-21, 1998.
14.Nielsen, J. and Olsson, L.,“The Role of Metabolic Engineering in The Improvement of Saccharomyces Cerevisiae: Utilization of Industrial Media,” Enzyme and Microbial Technology, Vol. 26, pp. 785-792, 2000.
15.Kacser, H., and Sauro, H., “The Control of Flux,” Symposia of the Society for Experimental Biology, Vol. 27, pp. 65-105, 1973.
16.Kacser, H. and Acerenza, L., “A Universal Method for Achieving Increase in Metabolite Production,” European Journal of Biochemistry, Vol. 216, pp. 361-367, 1993.
17.Kazuyuki, S.,“An Overview on Metabolic Systems Engineering Approach and Its Future Perspectives for Efficient Microbial Fermentation,” Journal of the Chinese Institute of Chemical Engineers, Vol. 31, No. 5, pp. 429 -442, 2000.
18.Warshel, A., Hwang, J.K., King, G. and Greighton, S., “Simulation of Free Energy Relationship and Dynamics of SN2 Reactions in Aqueous Solution,” Journal of the American Chemical Society, Vol. 110, pp. 5927, 1988.
19.Warshel, A., Computer Modeling of Chemical Reactions in Enzymes and Solutions, John Wiley & Sons, 1991.
20.Warshel, A., “Simulation of Enzyme Reactions Using Valence Bond Force Fields and Other Hybird Quantum/Classical Approach,” Chemical Reviews, Vol. 93, pp. 2523-2544, 1993.
21.Warshel, A., and Levitt, J., “Evaluation of Catalytic Free Energy in Genetically Modified Proteins,” Journal of Molecular Biology, Vol. 201, pp. 139-159, 1988.
22.Warshel, A., David, W. and Cameron, L., “Type and Amount of Individual Dietary Fibers on: Serum Lipid Profiles, Serum Glucose Concentration and Energy Intake in Rats,” Enzyme and Microbial Technology, Vol. 18, pp.1743-1756, 1997.
23.Warshel, A., and Visser, D., “Dynamics of Glucose Uptake by Single Escherichia coli Cells,” Metabolic Engineering, Vol. 23, pp. 320-333, 1998.
24.Pierre, B., Bioinformatics: The Machine Learning Approach, MIT Press, Cambridge, Massachuestt, 1998.
25.Rankin, S. J. and Kacser, H.,“Response of Metabolic Systems to Large Changes in Enzyme Activities and Effectors,” European Journal of Biochemistry, Vol. 213, pp. 613-624, 1993.
26.Reddy, R.M. and Erion, D.M., “Calculation of Relative Solvation Free Energy Differences by Thermodynamics Perturbation Method: Dependence of Free Energy Results on Simulation Length,” Journal of Computational Chemistry, Vol. 20, pp. 1018-1027, 1999.
27.Reder, C.,“Metabolic Control Theory :A Structure Approach,” Journal of Theoretical Biology, Vol. 135, pp. 175-201, 1988.
28.Savageau, M. A. and Voit, E. O.,“Power-Law Approach to Modeling Biological Systems I. Theory,” Journal of Fermentation Technology, Vol. 60, pp. 221-228, 1982.
29.Stephanopoulos, G. and Vallino, J.J., “Network Rigidity and Metabolic Engineering in Metabolite Overproduction,” Science, Vol. 21, pp. 1675-1680, 1991.
30.Stephanopoulos, G., Aristidou, A.A. and Nielsen, J., Metabolic Engineering: Principles and Methodologies, San Diego, Academic Press, 1998.
31.Torres, N. V., Voit, E. O., Glez, A. C. and Rodriguez, F., “An Indirect Optimization Method for Biochemical Systems: Description of Method and Application to the Maximization of the Rate of Ethanol, Glycerol, and Carbohydrate Production in Saccharomyces Cerevisiae,” Biotechnology and Bioengineering, Vol. 55, No. 5, pp. 758-772, 1997.
32.Torres, N.V., Rodriguez-Acosta, F. and Regalado, C.M., “Non- linear Optimization of Biotechnological Process by Stochastic Algorithms: Application to The Maximization of the Production Rate of Ethanol, glycerol and Carbohydrates by Saccharomyces Cererisiae,” Journal of Biotechnology, Vol. 69, pp. 15-28, 1999.
33.陳國誠, 微生物酵素工程學, 藝軒圖書出版社,台北,1988.
34.黃鎮剛, 張家靖, “酵素反應的電腦模擬,” 化學, 第52卷, 第二 期, pp. 246-250,1997.
35.潘福, 生物化學, 臺灣商務, 台北, 1988.
36.陳長安, 蘇清正, Lechinger生物化學(上册), 合記圖書出版社, 1986.